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Abstract. We introduce a new stochastic heat equation with a colored-white fractional noise,
which behaves as a Wiener process in the spatial variable and as mixed sub-fractional
Brownian motion in time. A necessary and sufficient condition for the existence of its solution
is reported. We also analyze regularity properties of this equation, with respect to the temporal
and spatial variables, respectively. Some fractal dimensions of the graphs and ranges of the
associated sample paths are determined.
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1. Introduction

Recently, stochastic heat equations driven by different kinds of noise have widely been
studied, and a lot of interesting results have been obtained (see, for instance, [2], [10], [12],
[15]). Especially in [10], the author studied the solutions to the stochastic heat equations with
fractional-white noise; that is with additive Gaussian noise that behaves as a Brownian motion
with respect to the spatial variable and as fractional Brownian motion with respect to the
temporal variable. These kinds of equations can be used to model a variety of physical
phenomena which are subject to random perturbations. In these models, the noise is added to
the partial differential equation to recover the chaotic nature of the process in question.
However, there are no strict rules which decide the choice of the noise term, and the choice of
a reasonable stochastic process really depends on the equation of motion in question, and on its
physical meaning as far as possible.

In this paper, we will introduce a stochastic heat equation with a new noise, which behaves
as a Wiener process in the spatial variable and as mixed-sub-fractional Brownian motion in
time. That is why we will call this equation Mixed-Sub-Fractional-White Heat Equation. The
concept of mixed sub-fractional Brownian motion was introduced and investigated in [18] and
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[3]. It is a linear combination of a finite number of sub-fractional Brownian motions. So it is,
in fact, an extension of both the sub-fractional Brownian motion and the Brownian motion; and
this is an advantage of this process. It preserves many properties of the well known mixed
fractional Brownian motion (see e.g. [4], [20]) but not the stationarity of the increments. It has
been proven in [18] that the mixed sub-fractional Brownian motion could serve to get a good
model of certain phenomena, taking not only the sign (as in the case of the fractional Brownian
motion and the sub-fractional Brownian motion), but also the strength of dependence between
the increments of the phenomena into account; and this is another reason making the
Mixed-Sub-Fractional-White Heat Equation interesting to be investigated. For more
information about the mixed sub-fractional Brownian motion see [18], [19] and [3]. A main
purpose of this paper is to study some fine properties of the solution to the
Mixed-Sub-Fractional-White Heat Equation. More precisely we will give a necessary and
sufficient condition for the existence of its solution. Then we will analyze its regularity
properties, with respect to the temporal and to the spatial variables. Given the importance of
the fractal dimensions of subsets of Rd for their geometrical complexities, we will also
investigate the Hausdorff and Packing dimensions of the graphs and the ranges of the
pertaining solution sample paths.

The rest of this paper is organized as follows. In Section 2, we will state some necessary
definitions and some important properties of the mixed-sub fractional Brownian motion, and
we will present some new characteristics of this process, useful for this study.

In section 3, we introduce our new mixed-sub-fractional Gaussian noise and define the
Wiener integral with respect to it. Then, we will introduce the Mixed-Sub-Fractional-White
Heat Equation, and investigate the existence and mixed-self similarity property of its solution.
The last section will be devoted to the study of the regularity of the solution to this equation, in
time then in space, and to the investigation of the Hausdorff and Packing dimensions of the
graphs and the ranges of the solution sample paths.

2. Mixed Sub-Fractional Brownian Motion

The sub-fractional Brownian motion (sfBm) is an extension of a Brownian motion, which
was investigated in many papers (e.g. [11], [13]). It is a stochastic process H   tH; t ≥ 0,
defined on a probability space ,F,P by

∀t ∈ R,  tH  BtH B−tH
2

, 1

where H ∈ 0,1, and BHt, t ∈ R is a fractional Brownian motion (fBm) on the whole real
line; i.e. BH is a continuous and centered Gaussian process with the covariance function
CovBHt,BHs  1/2 ∣ t ∣2H ∣ s ∣2H −∣ t − s ∣2H . 2

The index H is the Hurst parameter of BH. The sfBm arises from occupation time fluctuations
of branching particle systems with a Poisson initial condition [11].

For N ∈ N ∖ 0, H  H1,H2, . . ,HN ∈ 0, 1N & a  a1,a2, . . ,aN ∈ RN ∖ 0, . . , 0,
the mixed sub-fractional Brownian motion (msfBm), of parameters N, a and H, is the process
S  StHN,a; t ≥ 0  StH; t ≥ 0, defined on the probability space ,F,P by
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∀t ∈ R, StHN,a ∑
i 1

N

aiHit, 3

where Hi i∈1,...,N is a family of independent sub-fractional Brownian motions of Hurst
parameters Hi defined on ,F,P.

If N  1, and a1  1, SH  H is a sub-fractional Brownian motion, and if N  1,
H1  1/2 and a1  1, SH is a standard Brownian motion. So, the msfBm is more general, and
mainly for that reason, (see [18]), this process is interesting to be investigated.

The msfBm has been introduced by El-Nouty and Zili in [3], in the particular case where
N  2 and H1  1

2 . Then, it has been generalized and further investigated by Zili in [18]. In
the following lemma, we state some properties of this process, which will be useful in this
paper. For proofs of these properties and for more information on this process, the reader can
see [18].

Lemma 2.1. The msfBm satisfies the following properties:
1. StH is a centered Gaussian process.
2. ∀s ∈ R, ∀t ∈ R,

Ra,Ht, s  CovStHa,SsHa

∑
i 1

N

ai2t2Hi  s2Hi − 1/2s  t2Hi ∣ t − s ∣2Hi . 4

3. (Mixed-self-similarity property*) For any h  0, the processes ShtHa and
StHa1hH1 ,a2hH2 , . . . ,aNhHN  have the same law.

Let us further investigate this process, to enable a study the heat equation driven by it.

Remark 2.1. If Hi  1
2 for every non-zero parameter ai and i ∈ 1, . . . ,N, the processes

SHa and ∑ i1
N ai2 Bt have the same law, where B denotes the standard Brownian motion. In

this case, the associated heat equation had earlier been investigated in many works (e.g. [10]).
That is why, in this paper, we will be interested only on the case when
for all i ∈ 1, . . . ,N such that ai ≠ 0,we have Hi ≥ 1/2 , 5
and
we have at least i ∈ 1, . . . ,N such that ai ≠ 0 and Hi  1/2. 6

Moreover, some of our results will be true only under the condition:
for all i ∈ 1, . . . ,N such that ai ≠ 0,we have Hi  1/2. 7
And in all the sequel of this paper we will denote
Hi0  minHi ; i ∈ 1, . . . ,N; Hi  1/2 and ai ≠ 0. 8
Furthermore, the following lemma gives a moving average representation of the msfBm.

Lemma 2.2. If condition (7) holds, then for every t,

________
*The notion of Mixed-self-similarity property was first introduced in 2006 by Zili [20].
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StHa ∑
i 1

N

aiCHiHi − 1
2  R 0

t
u − s

Hi− 3
2  u  s−Hi−

3
2 du dWis, 9

where Wi ; i ∈ 1, . . . ,N are independent Brownian measures on R, and

CHi  2 
0


1  sHi− 1

2 − sHi− 1
2

2
ds  1

2Hi

− 1
2
. 10

Proof. By the independence of the processes Hi ; i ∈ 1, . . . ,N and by the moving average
representation of the sfBm given in [11] we get

StHa ∑
i 1

N

CHi 
R
t − s

Hi− 1
2  t  s−Hi−

1
2 − 2−s

Hi− 1
2 dWis, 11

where Wi ; i ∈ 1, . . . ,N are independent Brownian measures on R, and CHi is defined by
(10). Then, we easily check that
t − s

Hi− 1
2  t  s−Hi−

1
2 − 2−s

Hi− 1
2  Hi − 1

2  0

t
u − s

Hi− 3
2  u  s−Hi−

3
2 du, 12

for every Hi ∈  1
2 , 1 and t, s ∈ R2. Finally, from (11) and (12) we deduce trivially equation

(9). 

The following proposition will play a very important role in all the rest of this paper.

Proposition 2.1. If Conditions(5) and (6) are satisfied then, there exist two positive constants
C1 and C2 such that,

C1 ∣ u − v ∣2Hi0−2 ≤ ∂
2Ra,Hu,v
∂u∂v ≤ C2 ∣ u − v ∣2Hi0−2 , 13

for every u,v ∈ 0,T.

Proof. By Equation (4) we easily get
∂2Ra,Hs,t
∂s∂t ∑

i 1

N

ai2Hi2Hi − 1∣ t − s ∣2Hi−2 − t  s2Hi−2 . 14

Hence, a simple calculation allows us to arrive at equation (13) with

C1  ai02 Hi02Hi0 − 1 and C2  2∑
i 1

N

ai2Hi2Hi − 1T2Hi−Hi0.

3. The Heat Equation Driven by Mixed-Sub-Fractional Noise

The aim of this paper is to study the stochastic partial differential equation
∂ua,H
∂t  1

2 Δua,H  Wa,H, t ∈ 0,T, x ∈ Rd,

ua,H. , 0  0,
15

where Wa,H  Wa,Ht,A; t ∈ 0,T,A ∈ BbRd is a centered random noise with covariance
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given by:
EWa,Ht,AWa,Hs,B  Ra,Ht, sA ∩ B, 16
where  is the Lebesgue measure, and Ra,H is the covariance defined by (4). We will call this
noise mixed-sub-fractional-white because it behaves as a msfBm in time and as a Wiener
process (white) in space. The stochastic partial differential equation (15) will be called
mixed-sub-fractional heat equation.

The canonical Hilbert space associated to the noise Wa,H is defined as follows. First,
consider E to be the set of linear combinations of elementary functions 10,t  A, t ∈ 0,T,
A ∈ BbRd, and Ha,H be the Hilbert space defined as the closure of E with respect to the inner
product
 10,t  A,10,s  B H : EWa,Ht,AWa,Hs,B.
We have for g,h ∈ Ha,H, smooth enough,

 g,h Ha,H  
0

T 
0

T
dudv 

Rd
dy ∂

2Ra,Hu,v
∂u∂v gy,uhy,v. 17

By a routine extension of the construction described, in an example in [10] and [15], it is
possible to define Wiener integrals with respect to the process Wa,H. This Wiener integral will
act as an isometry between the Hilbert spaceHa,H and L2 defined by

E 
0

T 
Rd
u,yWa,Hdu,dy 

0

T 
Rd
u,yWa,Hdu,dy

 
0

T 
0

T
a,Hdu,dv 

Rd
dyu,yv,y, 18

for any function , such that


0

T 
0

T
d ∣ a,H ∣ u,v 

Rd
dy ∣ u,y ∣ ∣ v,y ∣  ,

and


0

T 
0

T
d ∣ a,H ∣ u,v 

Rd
dy ∣ u,y ∣ ∣ v,y ∣ ,

where a,H is the measure

da,Hu,v  ∂
2Ra,H
∂u∂v u,vdudv, 19

and |a,H| denotes the total variation measure associated to a,H.
The following transfer formula will be needed in the sequel.

Proposition 3.1. If Condition (7) holds, for every g ∈ Ha,H then


0

T 
Rd
gs,ydWa

Hs,y ∑
i 1

N

aiCHiHi − 1/2


R

Rd

R

10,Tugu,y u − s
Hi− 3

2  u  s−Hi−
3
2 du dWis,y, 20

where Wi, for i ∈ 1, . . . ,N, are independent space-time white noises with covariance
EWis,AWit,B  t ∧ sA ∩ B,
and

CHi  2 
0


1  sHi− 1

2 − sHi− 1
2

2
ds  1

2Hi

− 1
2
. 21

Proof. This proposition is a straightforward consequence of the moving average expression for
the msfBm (11). 



22 M. ZILI

Next let us define the mild solution of the sub-mixed heat equation (15).

Definition 3.1. If we denote by ua,Ht,x; t ∈ 0,T,x ∈ Rd, the process defined by
ua,Ht,x : 

0

t 
Rd
Gt − v,x − yWa,Hdv,dy, 22

where the above integral is a Wiener integral with respect to the noise Wa,H and G is the Green
kernel of the heat equation given by

Gt,x 
2t−d/2 exp ∣x∣2

2t , if t  0,x ∈ Rd

0 , if t ≤ 0,x ∈ Rd, 23

then the process ua,H is called the mild solution of the stochastic heat equation (15).

In the following proposition, we will give a necessary and sufficient condition for existence
of the mixed-sub-fractional heat equation mild solution.

Proposition 3.2. If Conditions(5) and (6) are satisfied, then the solution to the
mixed-sub-fractional heat equation (15) exists if and only if d  4Hi0 .

Proof. By (18) and (22),
Eua,H2 t,x  

0

t 
0

t
a,Hdu,dv 

Rd
dy Gx − y, t,uGx − y, t,v. 24

So it follows from (19) and Proposition 2.1 that
C1It,x ≤ Eua,H2 t,x ≤ C2It,x, 25
where
It,x  

0

t 
0

t
dudv ∣ u − v ∣2Hi0−2 

Rd
dyGx − y, t,uGx − y, t,v. 26

Using (23) and making a suitable change of variables, we obtain


Rd
dy Gx − y, t,uGx − y, t,v  

22t−u−v
d/2

. 27
Hence, from (25), (26) and (27), we deduce that the solution to the mixed-sub-fractional heat
equation (15) exists if and only if


0

t 
0

t
dudv ∣ u − v ∣2Hi0−2 2t − u − v−d/2  . 28

And we easily check that (28) is true if and only if d  4Hi0 . 

Throughout the rest of this paper, we shall assume that
d  4Hi0 , 29
and in the following proposition we will give an explicit expression for the covariance of the
mild solution.

Proposition 3.3. If Condition (7) holds, then for fixed x ∈ Rd, and for s ≤ t,

Eua,Ht,xua,Hs,x  
2

d/2∑
i 1

N

ai2Hi1 − 2Hi
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 
0

t 
0

s
dudvu  v2Hi−2 −∣ u − v ∣2Hi−2 t  s − u − v− d2 . 30

Proof. This result follows from (14), (18), (27) and some simple calculus. 

The next proposition deals with the mixed-self-similarity of the solution sample paths.

Proposition 3.4. If Condition (7) holds, then the process ua,H : t  ua,Ht,x is
mixed-self-similar of order H − d

4 . That is, for every h  0, the processes ua,Hht,xt∈R and
u
ahH−

d
4 ,H
t,xt∈R have the same law, where

ahH− d4  a1hH1− d4 , . . . ,aNhHN−
d
4 .

Proof. For fixed h  0, the processes ua,Hht,xt∈R and u
ahH−

d
4 ,H
t,xt∈R are Gaussian and

centered. Moreover, by proposition 3.4,

Eua,Hht,xua,Hhs,x  
2

d/2∑
i 1

N

ai2Hi1 − 2Hi


0

ht 
0

hs
dudvu  v2Hi−2 −∣ u − v ∣2Hi−2 ht  hs − u  v− d2 . 31

So, by the change of variables u′  u
h , v ′  v

h in the integral dudv we directly get

Eua,Hht,xua,Hhs,x  E u
ahH−

d
4 ,H
t,xu

ahH−
d
4 ,H
s,x .

This immediately implies proposition 3.4. 

4. Regularity and Fractal Properties

4.1. Study of the regularity of the solution in time

In this paragraph our attention will focus on the behavior of the increments of the solution
ua,Ht,x to (15) with respect to the variable t . We will give sharp upper and lower bounds for
the L2-norm of these increments. First, let us state the following technical lemma.

Lemma 4.1. For every  ∈  d4 , 1, there exist two positive constants c1d, and c2d,,
depending only on d and , such that, for every s, t ∈ 0,T,
1. 

s

t 
s

t
dudv ∣ u − v ∣2−22t − u − v−d/2 c1d, ∣ t − s ∣2−d/2.

2. 
0

s 
0

s
dvdu ∣ u − v ∣2−2 2t − u − v−d/2 − 2t  s − u − v−d/2

2s − u − v−d/2  ≤ c2d, ∣ t − s ∣2−d/2 .

Proof. The proofs of both assertions invoke in their first stage the change of variables
u′  t − u,v ′  s − v and then u′  u

t − s , v ′  v
t − s . For the second assertion, we use also the

fact that the integral
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
0

 
0


dudv ∣ u − v ∣2−2 2  u  v−d/2 − 1  u  v−d/2  u  v−d/2 

is finite. 

The main result in this paragraph is the following proposition.

Proposition 4.1. If conditions (5) and (6) are satisfied, then there exist two positive constants
C3 and C4 such that, for any s, t ∈ 0,T and for any x ∈ Rd,
C3|t − s|

2Hi0−
d
2 ≤ E|ua,Ht,x − ua,Hs,x|2 ≤ C4|t − s|

2Hi0−
d
2 .

Proof. We have
E|ua,Ht,x − ua,Hs,x|2  Ru,a,Ht, t − 2Ru,a,Ht, s  Ru,a,Hs, s,
where Ru,a,H denotes the covariance of the process ua,H with respect to the time variable for
fixed x ∈ Rd, i.e.
Ru,a,Ht, s  Eua,Ht,xua,Hs,x

 
2

d/2 
0

t 
0

s
dudv ∂

2Ra,Hu,v
∂u∂v t  s − u − v−d/2

for every s, t ∈ 0,T. So,

E|ua,Ht,x − ua,Hs,x|2  
2

d/2 
0

t 
0

t
dudv ∂

2Ra,Hu,v
∂u∂v 2t − u − v−d/2

− 2 
2

d/2 
0

t 
0

s
dudv ∂

2Ra,Hu,v
∂u∂v t  s − u − v−d/2

 
2

d/2 
0

s 
0

s
dudv ∂

2Ra,Hu,v
∂u∂v 2s − u − v−d/2

which can also be written as
E|ua,Ht,x − ua,Hs,x|2  Aa,Ht, s  Ba,Ht, s  Ca,Ht, s,
where

Aa,Ht, s  
2

d/2 
s

t 
s

t
dudv ∂

2Ra,Hu,v
∂u∂v 2t − u − v−d/2,

Ba,Ht, s  
2

d/2 
0

s 
0

s
dudv ∂

2Ra,Hu,v
∂u∂v 2t − u − v−d/2

−2t  s − u − v−d/2  2s − u − v−d/2 ,
and

Ca,Ht, s  2 
2

d/2 
s

t 
0

s
dudv ∂

2RH,au,v
∂u∂v 2t − u − v−d/2 − 2t  s − u − v−d/2 .

Since, Ca,Ht, s ≤ 0 and since
∂2Ra,Hu,v
∂u∂v ≤ C2 ∣ u − v ∣2Hi0−2 ,
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E|ua,Ht,x − ua,Hs,x|2

≤ c 
s

t 
s

t
dudv ∣ u − v ∣2Hi0−2 2t − u − v−d/2  

0

s 
0

s
dudv ∣ u − v ∣2Hi0−2

 2t − u − v−d/2 − 2t  s − u − v−d/2  2s − u − v−d/2 , 32
where c denotes a positive constant. Consequently, by (29), (32) and lemma 4.1 we get the
upper bound.

We now prove the lower bound. The mild solution is expressible as
ua,Ht,x : 

0

t 
Rd
Gt − v,x − yWa,Hdv,dy, 33

So, for every x ∈ Rd and s, t ∈ 0,T2,
ut,x − us,x

 
0

T 
Rd
Gt − ,x − y10,t − Gs − ,x − y10,s dWa,H,y. 34

By the transfer formula (20) we get:

ua,Ht,x − ua,Hs,x ∑
i 1

N

Diai,Hi 
R

Rd
dWi,yFi,y, 35

where, for every i ∈ 1, . . . ,N,
Diai,Hi  CHiHi − 1/2
and

Fi,y  
R
duGt − u,x − y10,tuTiu, − 

R
duGs − u,x − y10,suTiu,

with

Tiu,  u − 
Hi − 3

2  u  −
Hi − 3

2 .
Equation (35) and the independence of the Wi’s allow us to write

Eua,Ht,x − ua,Hs,x2  ∑
i 1

N

Di2ai,HiE 
R

Rd
dWi,yFi,y

2

 Di02 ai,Hi0 E R Rd dWi0,yFi0,y
2

 ∑
i1;i≠i0

N

Di2ai,Hi E 
R

Rd
dWi,yFi,y

2

≥ Di02 ai,Hi0 E R Rd dWi0,yFi0,y
2
, 36

where the last inequality is due to the fact that

∑
i1;i≠i0

N

Di2ai,Hi E 
R

Rd
dWi,yFi,y

2
≥ 0.

Moreover, by isometry of the Wiener processW we get
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E 
R

Rd
dWi0,yFi0,y

2
 

R

Rd
ddyFi02 ,y

≥ 
s

t 
Rd
ddyFi02 ,y. 37

Since,
Ti0,u  u − Hi0−3/21u≥  −u − Hi0−3/21u≤−,
we have

Fi0,y  
0

t
duGt − u,x − yTi0u, − 

0

s
duGs − u,x − yTi0u,

 


t
duGt − u,x − yu − Hi0−3/2,

for every  ∈ s, t. Hence,

E 
R

Rd
dWi0,yFi0,y

2

 
s

t 
Rd
ddy 



t
duGt − u,x − yu − Hi0−3/2

2
. 38

So, for every, s, t ∈ 0,T; s ≤ t,

E 
R

Rd
dWi0,yFi0,y

2

 
s

t
d 

Rd
dy 



t 


t
dvduGt − u,x − yu − Hi0−3/2

 Gt − v,x − yv − Hi0−3/2, 39

 
s

t
du 

s

t
dv 

Rd
dyGt − u,x − yGt − v,x − y


s

u∧v
u − 

Hi0−3/2
v − 

Hi0−3/2d,

where in the last equality we have used the fact that

s ≤  ≤ t,  ≤ u ≤ t,  ≤ v ≤ t  s ≤ u ≤ t, s ≤ v ≤ t, s ≤  ≤ u ∧ v.

Equations (39) and (27) imply that

E 
R

Rd
dWi0,yFi0,y

2
 

2
d/2 

s

t
du 

s

t
dv2t − u − v−d/2

 
s

u∧v
u − 

Hi0−3/2
v − 

Hi0−3/2d. 40

By the change of variable z  u∧v −
u∨v − and by some simple calculus we get
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
s

u∧v
u − Hi0−3/2v − 1−2Hi0d

 ∣ u − v ∣2Hi0−2 
s

u∧v −
u∨v − 1 − z1−2Hi0 zHi0−3/2dz. 41

Then, by (40) and (41),

E 
R

Rd
dWi0,yFi0,y

2
 

2
d/2 

s

t
du 

s

t
dv2t − u − v−d/2

 ∣ u − v ∣2Hi0−2 
0

u∧v −
u∨v − 1 − z1−2Hi0 zHi0−3/2dz. 42

Now, by the change of variables u − s  u′ and v − s  v ′ we obtain:

E 
R

Rd
dWi0,yFi0,y

2
 

2
d/2 

0

t−s
du 

0

t−s
dv2t − s − u − v−d/2

 ∣ u − v ∣2Hi0−2 
0

u∧v
u∨v 1 − z1−2Hi0 zHi0−3/2dz. 43

Finally, by the change of variables ũ  u
t −s and ṽ  v

t −s , it follows that

E 
R

Rd
dWi0,yFi0,y

2
 Dd,Hi0t − s2Hi0−d/2, 44

where Dd,Hi0 is the constant defined by

Dd,Hi0  c 
0

1
du 

0

1
dv2 − u − v−d/2 ∣ u − v ∣2Hi0−2 

0

u∧v
u∨v 1 − z1−2Hi0 zHi0−3/2dz.

Since Hi0  1
2 , the constant Dd,Hi0 is clearly finite. . 

Remark 4.1. Proposition 4.1 tells us that the process ua,H. ,x is an infinite dimensional
quasi-helix (in the sense of Kahane [7]) of index I  Hi0 − d

4 . Various properties of
quasi-helices are known and again we refer to [7] for more detailed information.

In particular, as an immediate consequence of proposition 4.1, the following results hold.

Corollary 4.1. If conditions (5) and (6) are satisfied, then for any x ∈ Rd, the process
t → ua,Ht,x is Hölder continuous of order  ∈ 0,Hi0 − d

4 .

As a second consequence of proposition 4.1, by proceeding as in the proof of Proposition
3.2 in [6], we arrive at the next result.

Corollary 4.2. If conditions (5) and (6) are satisfied, then for any x ∈ Rd,

→0
lim

t∈t0−,t0
sup ua,Ht, x − ua,Ht0, x

t −t0   .

with probability one for every t0. And consequently, the trajectories of the process ua,H. ,x
are not differentiable.
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4.2. Sharp regularity of the solution in space

In the spirit of [14], in this section we fix t  0 and analyze the space regularity of the
solution ua,Ht,x,x ∈ Rd. We will first prove the following lemma.

Lemma 4.2. If conditions (5) and (6) are satisfied, then the Gaussian random field
ua,Ht,x,x ∈ Rd is stationary with the spectral measure

Δd  2−d∑
i 1

N

ai2Hi2Hi − 1 
0

t 
0

t
dudvu  v2Hi−2 ∣ u − v ∣2Hi−2 

 
Rd

exp− 2t−u−v
2 ∣  ∣2 d.

Proof. By the Fourier transform of the Green kernel and Parseval’s identity we get

Eua,Ht,xua,Ht,y  
0

t 
0

t
dudv ∂

2Ra,Hu,v
∂u∂v 

Rd
dzGx − z, t,uGy − z, t,v

 2−d 
0

t 
0

t
dudv ∂

2Ra,Hu,v
∂u∂v 

Rd
d exp− t−u

2 ∣  ∣2 expi  x,  

exp− t−v
2 ∣  ∣2 exp−i  y,  

 
Rd

expi  x − y,  

 2−d 
0

t 
0

t
dudv ∂

2Ra,Hu,v
∂u∂v exp− 2t−u−v

2 ∣  ∣2  d.

Eua,Ht,xua,Ht,y  
0

t 
0

t
dudv ∂

2Ra,Hu,v
∂u∂v 

Rd
dzGx − z, t,uGy − z, t,v

By the expression of ∂
2Ra,H
∂u∂v we get the result. 

Corollary 4.3. If Conditions(5) and (6) are satisfied, then there exist two positive constants
c1t,Hi0 and c2t,Hi0, depending only on t and Hi0 , such that:
c1t,Hi0 ∣  ∣−4Hi0 d ≤ Δd ≤ c2t,Hi0 ∣  ∣−4Hi0 d for all  ∈ Rd with ∣  ∣≥ 1.

Proof. By equation (13), we have

C12−d 
0

t 
0

t
∣ u − v ∣2Hi0−2 dudvexp− 2t−u−v

2 ∣  ∣2 d

≤ Δd



Mixed Sub-Fractional-White Heat Equation 29

≤ C22−d 
0

t 
0

t
∣ u − v ∣2Hi0−2 dudvexp− 2t−u−v

2 ∣  ∣2 d,

and by [2] (Proposition 4.3), there exist two strictly positive constants c1,Hi0 ,c2,Hi0 such that

c1,Hi0 t
2Hi0 ∧ 1 1

1∣∣2

2Hi0

≤ 
0

t 
0

t
dudv ∣ u − v ∣2Hi0−2 exp− uv

2 ∣  ∣2  45

≤ c2,Hi0 t
2Hi0 ∧ 1 1

1∣∣2

2Hi0
.

This allows to see the stated result. 

Corollary 4.3 means, among other things, that the spectral measure Δd is comparable
with an absolutely continuous measure with density function that is comparable to ∣  ∣−4Hi0
for all  ∈ Rd with ∣  ∣≥ 1. This is quite interesting for the study of the regularity of
ua,Ht,x,x ∈ Rd. Indeed, as a first consequence of corollary 4.3, we get the following
result.

Theorem 4.1. Let   min1, 2Hi0 − d
2  and  

1 if   1

0 otherwise.
. If conditions (5) and

(6) are satisfied, then for any M  0, there exist positive and finite constants c3, c4 such that
for any x,y ∈ −M,Md,

c3 ∣ x − y ∣2 Log 1
∣x − y∣


≤ E∣ ua,Ht,x − ua,Ht,y ∣2 

≤ c4 ∣ x − y ∣2 Log 1
∣x − y∣


. 46

Proof. Take x,y ∈ −M,Md and let z : y − x ∈ Rd. By Parseval’s identity, we can write
E∣ ua,Ht,y − ua,Ht,x ∣2 

 
0

t 
0

t
a,Hdu,dv 

Rd
dy ′Gt − u,x  z − y ′ − Gt − u,x − y ′

 Gt − v,x  z − y ′ − Gt − v,x − y ′

 2−d 
0

t 
0

t
a,Hdu,dv 

Rd
d FGt − u,x  z −.  − Gt − u,x −. 
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 F Gt − v,x  z −.  − Gt − v,x −. 

 2−d 
0

t 
0

t
a,Hdu,dv 

Rd
dexp −2t − u − v ∣∣

2
2 2 − 2cos  , z ,

where in the last equality we have used
FGt,x −.   exp i  x,   − t∣∣

2
2 1t 0,  ∈ Rd.

Therefore,
E∣ ua,Ht,x − ua,Ht,y ∣2   22−d 

Rd
d 1 − cos  , z t, , 47

where

t,   
0

t 
0

t ∂2Ra,H
∂u∂v u,vdudvexp −2t − u − v ∣∣

2
2 .

By Equation (13),

C1 
0

t 
0

t
∣ u − v ∣2Hi0−2 dudvexp −2t − u − v ∣∣

2
2 ≤ t,  48

≤ C2 
0

t 
0

t
∣ u − v ∣2Hi0−2 dudvexp −2t − u − v ∣∣

2
2 ,

where C1 and C2 are two positive constants. Then, following the same lines as those of the
proof of Theorem 4 in [14], we show that there exist two strictly positive constants C5 and C6
such that

C5 ∣ x − y ∣2 Log 1
∣x − y∣



≤ 
Rd
1 − cos  , z d 

0

t 
0

t
∣ u − v ∣2Hi0−2 dudvexp −2t − u − v ∣∣

2
2

≤ C6 ∣ x − y ∣2 Log 1
∣x − y∣


. 49

Hence, the result is a straightforward consequence of equations (47), (48) and (49). 

As direct consequence of theorem 4.1 we obtain the next result.

Corollary 4.4. If conditions (5) and (6) are satisfied and 2Hi0 − d
2  1, then

ua,Ht,x,x ∈ Rd has a modification (still denoted by the same notation) such that almost
surely the sample function x  ua,Ht,x is continuously differentiable on Rd. Moreover, for
any M  0, there exists a positive random variable K with all moments such that for every
j  1, . . . ,d, the partial derivative ∂

∂xj
ua,Ht,x has the following modulus of continuity on

−M,Md:



Mixed Sub-Fractional-White Heat Equation 31

x,y∈−M,Md,∣x−y∣≤ 
sup ∂

∂xj
ua,Ht,x − ∂

∂yj
ua,Ht,y ≤ K2Hi0−

d
2 −1 Log 1

 . 50

Proof. With equation (13), we can apply exactly the same steps of the proof of Theorem 5 in
[4]. 

By lemma 4.1 and equation (13), and with the results of [17], we obtain the following
result that corresponds to the case where 2Hi0 − d

2  1.

Lemma 4.3. Suppose that conditions (5) and (6) are satisfied and 2Hi0 − d
2  1. Then, for

every fixed t  0, the Gaussian field ua,Ht,x,x ∈ Rd is strongly locally nondeterministic.
Namely, for every M  0, there exits a constant C7  0 (depending on t and M) such that for
every n ≥ 1 and for every x,y1, . . . ,yn ∈ −M,Md,
Varua,Ht,x|ua,Ht,y1, . . . ,ua,Ht,yn ≥ C7

0≤ j ≤n
min ∣ x − yj ∣4Hi0−d ,

where y0  0.

As a consequence of this lemma, and by [ [9], Theorems 4.1 and 5.1 ], we obtain the
following uniform and local moduli of the continuity characteristic.

Corollary 4.5. Suppose that conditions (5) and (6) are satisfied and 2Hi0 − d
2  1. Let t  0

and M  0 be fixed. Then, if we denote   2Hi0 − d
2 , we have

∙ Almost surely

 →0
lim x∈−M,Md,∣h∣≤ 

max ∣ua,Ht, xh−ua,Ht, x∣

 LogLog1/
 C8.

∙ For x0 ∈ Rd,

 →0
lim ∣h∣≤ 

max ∣ua,Ht, x0h−ua,Ht, x0∣

 LogLog1/
 C9,

where C8 and C9 are positive constants.

Now by lemma 4.3 and according to [8] we get the following Chung’s LIL characteristic.

Corollary 4.6. Suppose that conditions (5) and (6) are satisfied and 2Hi0 − d
2  1. Then, for

every t  0 and x0 ∈ Rd,

 → 0

lim ∣h∣≤ 
max ∣ua,Ht, x0h−ua,Ht, x0∣

 LogLog1/
 C10,

where C10 is a positive constant.

4.3. Fractal characteristics of the sample paths

For fixed x ∈ Rd, we denote the range of the restriction of the process ua,H. ,x on 0,T by
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ua,H0,T,x  ua,Ht,x; t ∈ 0,T, 51
and its graph by
GrfTua,H. ,x  t,ua,Ht,x; t ∈ 0,T, 52

where T    0.
The aim of this paragraph is to study Hausdorff and Packing dimensions of the sets defined

just above. These dimensions have extensively been used in describing thin sets and fractals.
Hence we only recall briefly their definitions. The Hausdorff dimension of a set E ⊂ Rd is
defined by

dimHE  inf  0;ME  0  sup  0;ME  ,
53

where, for  0, ME denotes the  − dimensional Hausdorff measure of E, defined by

ME 
→0
lim inf ∣ E ∣ ;E ⊂ 

k 1



Ek;∣ Ek ∣  , 54

where ∣ Ek ∣ is the diameter of the set Ek and the infinimum is taken over all coverings
Ekk∈N of E.

The packing dimension of a bounded set F ⊂ Rd is defined by:

dimPF  inf
n

sup dimBFn : F ⊂ 
n 1



Fn . 55

where, dimBFn is the upper box-counting dimension of Fn defined by
dimBFn 

 →0
lim sup logNFn,

−log , 56

and for any   0, NFn, is the smallest number of balls of radius  (in Euclidean metric )
needed to cover Fn.

Among the properties of such dimensions, we recall that for any bounded set F ⊂ Rd,
dimHF ≤ dimPF ≤ dimBF ≤ d. 57
For more information on Hausdorff and Packing dimensions , the reader is referred to [5].

Let us start this study by the set GrfTua,H. ,x. Throughout all the rest of this paper, c
denotes a generic positive constant that may be different from line to line.

Lemma 4.4. Suppose that conditions (5) and (6) are satisfied. For any T  0, with probability
1,
dimHGrfTua,H. ,x  dimPGrfTua,H. ,x  2 − Hi0  d

4 .

Proof. By corollary 4.1, for any T  0 and x ∈ Rd, ua,H. ,x has a modification whose
sample-paths have a Hölder continuity, with order   Hi0 − d

4 on the interval 0,T. So by
Lemmas 2.1 and 2.2 in [16], for any T  0, with probability 1,
dimHGrfTua,H. ,x ≤ 2 − Hi0  d

4 and dimPGrfTua,H. ,x ≤ 2 − Hi0  d
4 .

Now, in order to get the lower bound, by (57) and by the Frostman’s Theorem (see e.g.
[5]), we only need to show that for any T  0, the occupation measure  of t  t,ua,Ht,x,
when t is restricted to the interval 0;T, has with probability 1, a finite  −dimensional energy,
for any  ∈ 1, 2 − Hi0  d

4 . More precisely, for any Borel set A ⊂ R2, A is defined as
the integral
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A  
0

T
1t,ua,Ht,x∈Adt, 58

where, for every set V ⊂ R2, 1V denotes the characteristic function of the set V. Then we need
to prove that with probability 1, the integral

GrfTua,H.,x


GrfTua,H.,x

∣ x − y ∣− dxdy, 59

is finite. This is easily seen by a monotone class argument, to be equivalent to


0

T 
0

T
∣ s − t ∣  ∣ ua,Hs,x − ua,Ht,x ∣−dsdt  . 60

In order to obtain (60), it suffices to show that


0

T 
0

T
E∣ s − t ∣  ∣ ua,Hs,x − ua,Ht,x ∣− dsdt  . 61

Since the process ua,H. ,x is centered Gaussian, we easily check that for all
s, t ∈ R2, s ≠ t and for every real   1, we have
E∣ s − t ∣  ∣ ua,Hs,x − ua,Ht,x ∣− ≤ C11 ∣ t − s ∣1− a,H,x

−1 s, t, 62
where
a,H,x

2 s, t  Eua,Ht,x − ua,Hs,x2 ,
and C11 is a positive constant.

Now, by (62) and by proposition 4.1, we arrive at


0

T 
0

T
E∣ s − t ∣  ∣ ua,Hs,x − ua,Ht,x ∣−dsdt

≤ C11 
0

T 
0

T
∣ t − s ∣1− a,H,x

−1 s, tdsdt

≤ C12 
0

T 
0

T
∣ t − s ∣1 d4 −Hi0− dsdt

where C12 is a positive constant. And since  ∈ 1, 2 − Hi0  d
4 , the last double integral is

finite. Here the proof completes. 

In the following last lemma, we will give the Hausdorff and Packing dimensions of the set
ua,H0,T,x.

Lemma 4.5. Suppose that conditions (5) and (6) are satisfied. For any T  0, with probability
1,
dimHua,H0,T,x  1 and dimPua,H0,T,x  1.

Proof. By Lemmas 2.1 and 2.2 in [16], we clearly have
dimHua,H0,T,x ≤ 1 and dimPua,H0,T,x ≤ 1 a. s.
So, by (57), we only need to prove that
1 ≤ dimH ua,H0,T,x a. s.

Next we note that for  ∈ 0,T,
dimua,H0,T,x ≥ dimua,H,T,x,
and that for any standard normal variable X and 0    1, we have
E∣ X ∣−   . 63
Hence by Frostman’s theorem (see e.g. [5]), it is sufficient to show that for all 0    1,
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E  


T 


T
E∣ ua,Hs,x − ua,Ht,x ∣− dsdt  . 64

By proposition 4.1 and (64), there exists a positive and finite constant C13 such that
E ≤ C13 



T 


T
∣ s − t ∣−Hi0−

d
4  dsdt . 65

Since 0  Hi0 − d
4   1, the second member of the inequality (65) is finite, which leads to

the required result. 
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