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Abstract. The article presents results on existence and uniqueness of mild solutions to some
neutral stochastic partial functional integrodifferential equations under Carathéodory-type
conditions. The results are obtained by using the method of Picard approximation and
generalize the results that were reported by Bao and Hou in [3]. The theory of resolvent
operators, developed in [2], is employed to demonstrate the existence of these mild solutions.
A practical example is provided to illustrate the viability of the abstract results of this work.
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1. Introduction

Neutral stochastic partial functional differential equations arise in many areas of applied
mathematics. For this reason, the study of this type of equations has been receiving increased
attention in the last few years (see, e.g. [8], [3], [1], [9], [10], [7] and references therein ). In
[3],Bao and Hou studied, in particular, a stochastic neutral partial functional differential
equation. Our intention in this work is to extend these results to stochastic neutral partial
functional integrodifferential equations. Our work can in fact be regarded as extension and
further development of the work in ([4],[3]).

The present analysis focuses on the following neutral stochastic partial functional
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integrodifferential equation in a real separable Hilbert space.
d [u(t) + G(t,u)] = Afu(t) + G(t,u)]dt + [j; B(t — s)[u(s) + G(s, us)]ds + F(t, uy) ]dt
+ H(t,u))dw(t), fort e [0, T], N
Uo(.) =¢ € C = C([-r,0]; H) , Where r > 0.

Here ui(0) = u(t + @) for 6 € [-r,0]. The mappings
G:Ri;xC->H,F:R,xC-H, andH : R, xC > L(K,H) are borel measurable.

The aim of this paper is to study the solvability of (1)and to investigate the existence of
mild solution to (1)relying on the Picard iteration. An example is moreover presented to
illustrate the applicability of the obtained abstracts results. These results rely essentially on
techniques employing a strongly continuous family of operators {R(t) : t > 0}, defined on a
Hilbert space H, and utilize their resolvent (the precise definition of this will be given below).
Beyond existence and uniqueness, one should also investigate the qualitative effects of
pertaining solutions. These effects will be the topic of forthcoming works.

In Section 2 we will firstly introduce some essential notations, concepts and basic results
about the Wiener process and deterministic integrodifferential equations. The existence and
uniqueness of mild solutions are studied in Section 3 by means of the Picard iteration. Finally,
in Section 4 we apply the obtained results, pertaining to (1), to illustrate their applicability.

2. Wiener Process and Deterministic Integrodifferential Equations

2.1. Wiener process

Throughout this paper, let (Q, F, {Ft}.,,P) be a complete probability space with a normal
filtration {Fi} o satisfying the usual conditions (i.e. it is increasing and right-continuous while
Fo contains all P-null sets). Moreover, let Hand K be two real separable Hilbert spaces;we
denote by (.,.)y, (.,.)their inner products and by |. [y . xtheir vector norms,
respectively. We denote by £(H, K) the space of all bounded linear operators from H into K,
equipped with the usual operator norm ||. ||. Throughout this paper, when no confusion possibly
arises, we shall always use the same symbol ||. || to denote norms of operators regardless of the
spaces potentially involved. Let r >0 and C = C([-r,0];H) denote the family of all
continuous H-valued functions & from [-r,0] to H with norm [|§]|. = sup [[&(t) || ;. And let

te[-r,0]
CY% ([-r,0;H) be the family of all almost surely bounded, Fo-measurable,
C([-r,0]; H)-valued random variables.

Let {w(t) : t > 0} denote a K-valued Wiener process defined on the probability space
(Q, F, {Ft}eo,P) with covariance operator Q; that is, E(w(t),X), (W(S),Y)x = (t A S)}QX,Y)k,
for all x,y € K, where Q is a positive, self-adjoint, trace class operator on K. In particular, we
denote by w(t) a K-valued Q-Wiener process with respect to {Fi}wo0. TO define stochastic
integrals with respect to the Q-Wiener process w(t), we introduce the subspace Ko = Q2K of
K, endowed with the inner product (u,v) = (Q7Y2u,Q7Y2v)_ as a Hilbert space. We assume
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further that there exists a complete orthonormal system <{e;j} in K, a bounded sequence of
nonnegative real numbers A; such that Qe; = Aie;,i = 1,2,... , and a sequence {Bi(t)}i-1 of
independent standard Brownian motions such that

w(t) = 37 JAi Bi(hei,  t=0,

and F; = FY¥, where FY is the o-algebra generated by {w(s) : 0 <s < t}. Finally, assume
LS = £,(Ko,H) to be the space of all Hilbert—Schmidt operators from Ko to H. It turns out
to be a separable Hilbert space equipped with the norm [|v] ., = tr((vQ¥2)(vQ¥2)*) for any

v € LJ. Obviously, for any bounded operator v e £9, this norm reduces to ||v||ig = tr(vQv*).

2.2. Partial integrodifferential equations

In this subsection, we recall some fundamental results needed to establish our results. As
for the theory of resolvent operators, we refer the reader to [2, 6] . Throughout this paper, X is
a Banach space, A and B(t) are closed linear operators on X. Y represents the Banach space
D(A) equipped with the graph norm defined by

ylv == |Ayl+ly] ~ for y €Y.

The notations C([0,+x);Y),B(Y, X) stand for the space of all continuous functions from
[0,+00) into Y, the set of all bounded linear operators from Y into X, respectively. We are able
then to invoke the following Cauchy problem

v () = Av() + j;B(t—s)v(s)ds for t>0,
v(0) = vg € X.

(2)

Definition 2.1.[2] A resolvent operator for Eq.(2) is a bounded linear operator valued function
R(t) € L(X) fort > 0, having the following properties:

e (i) R(0) = land |R(t)|< Ne?, for some constants N and .

e (if) Foreachx € X, R(t)x is strongly continuous fort > 0.

o (ili) R(t) € L(Y) fort > 0. Forx € Y,R(.)x € C1([0,+00); X) N C([0,+);Y) and

R'(X = AR(X + | ; B(t — s)R(s)xds
= ROAX+ | ; R(t—s)B(s)xds for t> 0.

In what follows we make the following assumptions :

(H1): Ais the infinitesimal generator of a strongly continuous semigroup on X.

(H2): For all t > 0, B(t) is a closed linear operator fromD(A) to X, and B(t) € B(Y, X).For
any y e Y, the mapt -~ B(t)y is bounded differentiable and the derivative t - B'(t)yis
bounded and uniformly continuous on R*.

The resolvent operator plays an important role in the study of the existence of solutions and
in providing a variation-of-constants formula for nonlinear systems. We, however, need to
know when the linear system(2)has a resolvent operator. For more details on resolvent
operators, we refer the reader to [2, 6]. In actual fact, the following theorem gives a
satisfactory answer to this problem, and it will be used in this work to develop our main
results.
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Theorem 2.1.[2] Assume that (H1)-(H2) hold. Then there exists a unique resolvent operator
of the Cauchy problem(2).

Let us now give some results on the existence of solutions for the following
integrodifferential equation

V(D) = Av(t) +j;B(t—s)v(s)ds+ qt), for t>0,
v(0) = vp € X,

©)

where q : [0,+oc[— X is a continuous function.

Definition 2.2.[2] A continuous function v : [0,+o0) — X is said to be a strict solution of
Eq.(3) if

(i) v e C1([0,+0);X) N C([0,+x);Y),

(i) v satisfies Eq.(3) fort > 0.

Remark 2.1. From this definition, we deduce thatv(t) € D(A), the function B(t —s)v(s) is
integrable,forall t > 0, and s € [0,t].

Theorem 2.2.[2] Assume that (H1)-(H2) hold . If v is a strict solution of Eq.(3), then

V(t) = R(HVo + j;R(t—s)q(s)ds, for t>0. (4)

Accordingly, we we are able to state the following definition.

Definition 2.3.[2] For vy € X, afunctionv : [0,+0) — Xis called a mild solution of (3) if v
satisfies (4).

The next theorem provides sufficient conditions for the regularity of solutions of Eq. (3).

Theorem 2.3.[2] Let q € C*([0,+0);X) and v be defined by (4). If vo € D(A), then v is a
strict solution of Eq.(3).

For convenience, we invoke from [5] the mild solution to (1) as follows.

Definition 2.4. A process {u(t), 0 <t < T}, 0 <T < 4o, is called a mild solution of Eq.(1) if
(i) u(t)is F; —adapted and continuouts for t > 0, almost surely,
(if) For arbitraryt € [0, T], P{o : jollu(s) ||]%Ids < 400} = land almost surely

u(t) + G(t,u) = R(®)[(0) + G(0, p)] + j ; R(t — $)F(s, Us)ds + j; R(t—S)H(s,us)dw(s).  (5)

To guarantee the existence and uniqueness of a mild solution to Eq.(1)the following much
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weaker conditions (instead of the global Lipschitz condition and linear growth) are listed.
(H3): The mappings F(.) and H(.) satisfy, for any {,n € H and t > 0, the following
non-Lipschitz condition:

IFO —Fam g+ IHEE) ~HEtm 29 < 2IE - nllg),
where A(.) isa concave nondecreasing function from R* to R* such that A(0) = 0, A(u) > 0,
for u > 0 and j0+ o = 40, 8., AU) ~ U%, 3 <a <L
(H4): There isan M > 0 such that

sup (IFt0)IIE V IH(E0)1%9) < M.

0<t<T
(H5): The mapping G(t,x) satisfies, when there exists K > 0, such that for any {, n € H and
t>0,

IG(tE) =Gt I < KlIE—nllc.
To develop our main results we shall need in the sequel the following lemmas.

Lemma 2.1. ([12], theorem 1.8.2, p. 45) Leta > 0,c > 0 and ¥ : R* - R* be a continuous
nondecreasing function, such that «(t) > 0 for all t > 0. Let u(.) be a Borel measurable
bounded nonnegative function on [0, a], and assume v(.) to be a nonnegative integrable
function on [0, T]. If

u) <c+| LV(S)K(u(s))ds, Vv t e [0al,
then

u(t) <33 + | ;v(s)ds),
holds for all t € [0,a] such that J(c) + jt v(s)ds € Dom(J1), where J(z) = r ;o) ont >0,
and J71 is the inverse function of J. In particular, if, moreover, ¢ = 0 and j (S) = +o0, then
u(t) = 0forallt € [0,a].

Lemma 2.2. ([11], lemmal) For x,y € Hand 0 < ¢ < 1,the following inequality is true.
IXIIE < e Ix=ylI&+ TlIyIE

3. Existence and Uniqueness

In this section, we move to study the existence and uniqueness of mild solutions to neutral
stochastic partial functional integrodifferential equations under a non-Lipschitz condition and a
weakened linear growth condition. To complete our main results, we need to develop several
lemmas which will be utilized in the sequel.

Invoke the following Picard iteration which is defined by

u(t) = R(t)e(0) for t e [0,T],

u(t) = o(t) for t e [-r,0],
and u" for n > 1 is defined by

u(t) = e(t) for te [-r,0],
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and
u"(t) + G(t,uf) = RM[e0) + G(0,9)] + J'; R(t — s)F(s, ut)ds

+ [ R(t-9)H(s, ulHdw(s), t e [0,T]. (6)

Lemma 3.1. Let the hypotheses(H1)-(H5)hold and K < 1. Then there is a positive
constant C, which is independent of n > 1,such that for any t € [0, T],

Esuplu"@® % < C. (7
0<t<T

Proof. For 0 <t < T, it follows easily from (6) that
E sup [[u"(®) +G(tuf)llf, < 3E sup [RM)[p(0) +G(O0,¢)]

0<t<T O<s<t

s s |[[Re-oreurs |

(8)
t 2
+3E sup ||f0 R(t — s)H(s, ul-1)dw(s) ||
0<t<T H
= 3(|1 +1o+ |3).
Employing the assumption (H5) results with
l1 < Mi(1+K)%Elle |, 9)
where
M1 =sup [R(t)[%.
0<t<T
On another note, in view of (H4), we deduce from Hdolder’s inequality that
I, < TE sup [ [|R(t—$)[F(s,ul™) — F(s,0) + F(s,0)] | %,ds
0<t<T
< 2TM[ MT + [T EA(luz | 2)ds |. (10)

Next,according to Liu ([5], Theorem 1.2.6, p. 14]) together with (H4), there exists a constant
C > 0 such that

I < CJ IIH(s,u™) — H(s,0) + H(s, 0)] |, ds
< 2C[ MT + j; EA([lug (1 2)ds |- (11)

Since A(u) is concave on u > 0, then there is a pair of positive constants a, b such that
A(u) < a+bu.
Putting (9)-(11) into (8) yields, for some positive constants C; and C, that
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;
E sup lu"(t) + G(t,u) |4 < C1 + Cy jo Eflus | 2ds, (12)

0<t<T
While, by Lemma 2.2 for K < 1, it follows that
E(sup [[u"(®)[1%) < s1E sup [lu"(t) + G(t,uP) |15 + LE sup Gt uP) |l
0<t<T 0<t<T 0<t<T
< <LE sup u(t) + G(tup) |1z + KE(sup [lu"®)1Z) +KElel2,
0<t<T 0<t<T
which further implies that

E(sup u"® %) < 37 E sup u"(®) + Gt up) I + £ Ellollc.
O<t<T 0<t<T

Thus, by (12) we have
)
E(sup [u"®113) < 5% + [ 2 + 5 [Elloll + 252 [ sup lum(@)]13ds.

K)?2 (1-K)2 1-K
0<t<T 0<0<s

Observing that

_ 2 2 2
max E sup Ju™*(t)|ly; < Ellellc +max E sup [Ju"(t) |5,
Isnk o<t I<nsk o<t<T

allows, for some positive constants C3 ,Cy, to write

.
max E sup [lu"(t)[|Z < Cs+CsEfJ max E sup [[u"(6) | 5ds.
1<nsk  Q<t<T 0 1nsk 0<6<s

Now, an application of the well-known Gronwall’s inequality yields that
max E sup [u"(t)[|Z < Cs+exp(CaT).

I<nsk oteT
Since k is arbitrary, the required assertion (7) directly follows. |

Lemma 3.2. Let the conditions (H1) — (H4) be satisfied. We further assume that
K< 1. (13)

Then there exists a positive constant K such that, forall 0 <t < Tand n,m > 1,

- t
E sup [[u™™(s) — u"(s) ||I2HI <K IO /”L(E sup [u™m-1(s) — u"1(s) ||él>ds. (14)

O<s<t 0O<lIss

Proof. From(6)it is easy to see that, forany 0 <t < T,
E sup [lu™m(s) —u"(s) + G(s,ul*™(s)) —G(s,ul(s)) [

O<s<t

< 2E sup ||[SRGs ~ DIFQLUP™) — F(Lup-)ldl ||;I

O<s<t
+2E sup || ] R(s = DIHAL uF™) — H(l, uf-L]dw() ||;1:: 31+ Jn.
O<s<t

The proof of Lemma3.1 indicates the existence of a positive constant Cs satisfying
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Ji+dp < c5IZ*(E sup [[umm(l) - “”_1(')”@(15'

0<lI<s
Moreover, Lemma3.1 and (H5) imply that
E sup lu™™(s) —u™(s) [ < T2E sup [[u™™m(s) — un(s) + G(s,ul*™(s)) — G(s,ul(s)) 1%
0<s<t O<s<t

+KE sup [Ju™m(s) —u"(s) |2

O<s<t

< f_}”( ;/1<E sup [Ju™™L(l) —u™L(l) ||§H>ds+KE sup [lu™m(s) —un(s) |2

0<lIss O<s<t

So the desired assertion (14) follows from the validity of (13). |
It is possible now to state our main result.
Theorem 3.1. Under the conditions of Lemma 3.2, then Eq.(1) admits a unique mild solution.

Proof. Uniqueness: Denote by u(t) and ux(t) two mild solutions to (1). In the same way as
Lemma 3.2 was proved, we can show that, for some D > 0,

E sup [lui(s) —uzx(s) % < DjLA(E sup Jlus(l) —uZ(I)IIfEH)ds.

O<s<t 0<I<s
This, together with Lemma 3.2, leads to
E sup [Jua(s) —uz(s)ll% = 0,
0<s<t
which further implies that u;(s) = u2(s) almost surely forany 0 <t < T.
Existence: Following also the proof of Lemma 3.2, there exists a positive constant C such that,
forall0 <t<Tandnm> 1,

E sup [Ju™i(s) —um™i(s) ||;I < Cj:))(E sup |lu"(s) —u™m(s) ||§H>ds.

O<s<t O<lss

Integrating both sides and applying the Jensen’s inequality gives

ILE sup [unL(l) —umL(ly |2 ds < c‘:j;j;x<5 sup [[u"(l) —um(l)||§ﬂ>dlds

O<l<s O<l<s

- CILSIZA<E sup ||u“(|)—um(l)||§ﬂ>%dlds

0<l<s

< CtILlOZE sup [lun(l) —um(l)||]%1%dl>ds.

0<I<s

Then
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Viermea (1) < CI; A(Vnm(S))ds,
where
Vam(®) = + [0 E sup [lu(l) —um(1)[|Zds.

O<lI<s

While by Lemma3.1, it is easy to see that
sup Vam(t) < oo.

n,m-oo

So letting v(t) := lim sup vnm(t)and invoking the Fatou’s lemma yields

n,m-oo
v(t) < T A(v(s))ds.
Next, apply Lemma3.2 to realize immediately, for any t € [0, T], that v(t) = 0. This further
means that {u"(t), : n e N} is a Cauchy sequence in L2.So there isa u € L? satisfying

lim ng sup [[u"(s) — u(s)||% = 0.

N—o0 OSSSt

Moreover, by Lemma3.2, it is easy to conclude that E| u(t) ||HZ41 < C. Hencein what follows we
claim that u(t) is a mild solution to Eq.(1). Indeed, on one hand, by (H4), the Holder’s
inequality, according Liu ([5], Theorem 1.2.6, p. 14) and letting n — oo, for 0 <t < T, we can
also claim, for t € [0, T], that

| [\ Rt =9)[F(s,utt) ~ Fes,unlas|| . ~ 0, E[|[; Rt -)[Hs,ur) - Hes,ulds |- — 0.

On the other hand, by applying (H5), we can also claim, for t € [0, T], that
EG(s,uf) — G(s,Us) |3 < K2E sup [[u"(s) —u(s) |5 ~ O.

O<s<t

Now taking limits in both sides of (6) leads, for t > 0, to
u(t) = R(O[@(0) + G(0, )] — G(t, uy) + j; R(t — s)F(s, us)ds + j; R(t — $)H(s, Us)dw(s).
This is an illustration that u is a mild solution to of Eq.(1) on [0, T]. H

4. Application

. We conclude this work with the example
L[xo + [ ot xt+0,6)d0 ] = Z[xt.9) + [ gtx(t+6,8)d0 |
+[ bt~ s)%[x(s,g) + jfrg(t,x(t + 0,5))d0]ds
+ ° f(t, x(t + 6, E))dA + h(t,x(t + 0,E))dw(t) for t >0 and & e [0, 7] (15)
X(t,0) + fig(t,x(t+ 0,0))dd = 0 fort > 0
x(t,7)+ [ g(tx(t+6,7))do = 0 fort >0
X(0,&) = xo(0,¢&) for@ € [-r,0] and & € [0, 7],
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where w(t) denotes a R-valued Brownian motion, g, f, h : R x R — R are continuous
functions, b : R* - R is continuous and xo : [-r,0] x [0,7] - R is a given continuous
function such that xo(.) € L2([0,7]) is Fo-measurable and satisfies E o> < oo.

Let H = L2([0, x]) with the norm |.|| and e, := Esin(nx), (n=1,2,3,---) denote the
complete orthonormal basis in H. Also let w(t) = ZL J2n Bn(t)en (An > 0), where
PBn(t) are one-dimensional standard Brownian motions mutually independent on a usual
complete probability space (QQ, F,{ Fi}wo,P). Definethen A : H — H where A = 5722

with the domain D(A) = H2([0,7]) N HE([0,x]).
Consequently Ah=-3" n? <he, >e, heD(A), where e,, n=1,2,3,--, isalso
the orthonormal set of eigenvectors of A.
It is well-known that Ais the infinitesimal generator of a strongly continuous semigroup on

H, thus (H1)is true. Furthermore let B : D(A) c H - H, be the operator defined by
B(t)(z) = b(t)Azfort > 0and z € D(A). We may suppose then that

(i) There exists a positive constant Lg, /Ly > 0, such that

9(t,¢1) =9t $2)I? < Lglgs — &2

(i) There exists a constant L¢, 0 < zr? L¢ < 1, such that

f(t,¢1) — f(t.C2)I* < Le 2(1S1 = L2110,

(iii) There exists a constant Ly, 0 < zr Ly < 1, such that

h(t,¢1) = h(t.¢2)I* < A5 = &2 11)-
Also let C = C(:)([—r,O];IHI) and define the operators G,F,H : R* x C -» H by
G(t$) (&) = |_ gt $(0)(£)do for & e [0,7] and ¢ < C,
Fto)(©) = | i f(t,¢(0)(£))do for & € [0,7] and ¢ € C,
H(t ¢)(&) = h(t,¢(0)(£)) for & € [0,x] and ¢ € C.

Now if we put
u(t) x(t,&)fort >0and & e [0, 7]
e0)(E) = Xxo(0,&) for6 € [-r,0]and & € [0,x].
Then Eq. (15) takes the following abstract form

d [u(t) + G(t,u)] = Afu(t) + G(t,u)]dt + [j; B(t - s)[u(s) + G(s, us)]ds + F(t,up) ]t
+ H(t, u)dw(t), fort e [0,T], (16)
Uo(.) =¢ € C = C([-r,0]; H) , Where r > 0.

Moreover, if b is bounded and C?! function such that b’ is bounded and uniformly continuous,
then (H1) and (H2) are satisfied and hence, by Theorem?2.2, Eq. (2) has a resolvent operator
(R(t))w0 on H. The assumption (i) implies moreover that

IG(t ¢1) — Gt ¢2) [l 20,1 = T Lg All¢1 — 2[12).
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And by assumptions (ii)and (iii) we have
IF(t ¢1) — F(t@2) [l 20,z < 2w L Il 1 — 2[I2).

IH(t ¢1) — H(t $2) I 210,y < 17 Lo Al d2 — d2[18).

Thus, all the stipulations of Theorem 3.3 are fulfilled, and the existence of a unique mild
solution of EQ.(15) has been demonstrated.
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