
Journal of Numerical Mathematics and Stochastics, 4 (1) : 1-12, 2012 © JNM@S
http://www.jnmas.org/jnmas4-1.pdf Euclidean Press, LLC

Online: ISSN 2151-2302

A Note on the Existence and Uniqueness of Mild
Solutions to Neutral Stochastic Partial Functional

Integrodifferential Equations With
Non-Liphschitz Coefficients

M.A.DIOP1, K.EZZINBI2, and M.LO1

1UFR SAT, Département de Mathématiques, Université Gaston Berger de Saint-Louis, BP 234, Saint-Louis,
Sénégal; 2Département de Mathématiques, Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390,

Marrakech, Maroc, E-mail: mamadou-abdoul.diop@ugb.edu.sn

Abstract. The article presents results on existence and uniqueness of mild solutions to some
neutral stochastic partial functional integrodifferential equations under Carathéodory-type
conditions. The results are obtained by using the method of Picard approximation and
generalize the results that were reported by Bao and Hou in [3]. The theory of resolvent
operators, developed in [2], is employed to demonstrate the existence of these mild solutions.
A practical example is provided to illustrate the viability of the abstract results of this work.
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1. Introduction

Neutral stochastic partial functional differential equations arise in many areas of applied
mathematics. For this reason, the study of this type of equations has been receiving increased
attention in the last few years (see, e.g. [8], [3], [1], [9], [10], [7] and references therein ). In
[3],Bao and Hou studied, in particular, a stochastic neutral partial functional differential
equation. Our intention in this work is to extend these results to stochastic neutral partial
functional integrodifferential equations. Our work can in fact be regarded as extension and
further development of the work in ([4],[3]).

The present analysis focuses on the following neutral stochastic partial functional
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integrodifferential equation in a real separable Hilbert space.

d ut  Gt,ut  Aut  Gt,utdt  
0

t Bt − sus  Gs,usds  Ft,ut dt

 Ht,utdwt, for t ∈ 0,T, 1
u0.    ∈ C  C−r, 0;H , where r  0.

Here ut  ut   for  ∈ −r, 0. The mappings
G : R  C → H, F : R  C → H, and H : R  C → LK,H are borel measurable.

The aim of this paper is to study the solvability of (1)and to investigate the existence of
mild solution to (1) relying on the Picard iteration. An example is moreover presented to
illustrate the applicability of the obtained abstracts results. These results rely essentially on
techniques employing a strongly continuous family of operators Rt : t ≥ 0, defined on a
Hilbert space H, and utilize their resolvent (the precise definition of this will be given below).
Beyond existence and uniqueness, one should also investigate the qualitative effects of
pertaining solutions. These effects will be the topic of forthcoming works.

In Section 2 we will firstly introduce some essential notations, concepts and basic results
about the Wiener process and deterministic integrodifferential equations. The existence and
uniqueness of mild solutions are studied in Section 3 by means of the Picard iteration. Finally,
in Section 4 we apply the obtained results, pertaining to 1, to illustrate their applicability.

2. Wiener Process and Deterministic Integrodifferential Equations

2.1. Wiener process

Throughout this paper, let ,F,F tt≥0,P be a complete probability space with a normal
filtration F tt≥0 satisfying the usual conditions (i.e. it is increasing and right-continuous while
F0 contains all P-null sets). Moreover, let HandK be two real separable Hilbert spaces;we
denote by 〈. , . H, 〈. , . K their inner products and by ‖. ‖H, ‖. ‖K their vector norms,
respectively. We denote by LH,K the space of all bounded linear operators from H into K,
equipped with the usual operator norm‖. ‖. Throughout this paper, when no confusion possibly
arises, we shall always use the same symbol‖. ‖ to denote norms of operators regardless of the
spaces potentially involved. Let r  0 and C  C−r, 0;H denote the family of all
continuous H-valued functions  from −r, 0 to H with norm ‖‖C 

t∈−r,0
sup ‖t‖H. And let

CF0
b −r, 0;H be the family of all almost surely bounded, F0-measurable,

C−r, 0;H-valued random variables.
Let wt : t ≥ 0 denote a K-valued Wiener process defined on the probability space

,F,Ftt≥0,P with covariance operator Q; that is, E〈wt,xK〈ws,yK  t ∧ s〈Qx,yK,
for all x,y ∈ K, where Q is a positive, self-adjoint, trace class operator on K. In particular, we
denote by w(t) a K-valued Q-Wiener process with respect to Ftt≥0. To define stochastic
integrals with respect to the Q-Wiener process wt, we introduce the subspace K0  Q1/2K of
K, endowed with the inner product 〈u,vK0

 〈Q−1/2u,Q−1/2vK as a Hilbert space. We assume
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further that there exists a complete orthonormal system ei in K, a bounded sequence of
nonnegative real numbers i such that Qei  iei, i  1,2, . . . , and a sequence iti1 of
independent standard Brownian motions such that
wt  ∑ i1

 i itei, t ≥ 0,
and Ft  Ft

w, where Ft
w is the -algebra generated by ws : 0 ≤ s ≤ t. Finally, assume

L2
0  L2K0,H to be the space of all Hilbert—Schmidt operators from K0 to H. It turns out

to be a separable Hilbert space equipped with the norm ‖v‖L2
0  trvQ1/2vQ1/2∗ for any

v ∈ L2
0. Obviously, for any bounded operator v ∈ L2

0, this norm reduces to ‖v‖L2
0

2  trvQv∗.

2. 2. Partial integrodifferential equations

In this subsection, we recall some fundamental results needed to establish our results. As
for the theory of resolvent operators, we refer the reader to [2, 6] . Throughout this paper, X is
a Banach space, A and Bt are closed linear operators on X. Y represents the Banach space
DA equipped with the graph norm defined by
|y|Y : |Ay||y| for y ∈ Y.

The notations C0,;Y,BY,X stand for the space of all continuous functions from
0, into Y, the set of all bounded linear operators from Y into X, respectively. We are able
then to invoke the following Cauchy problem

v ′t  Avt  
0

t Bt − svsds for t ≥ 0,

v0  v0 ∈ X.
2

Definition 2.1.[2] A resolvent operator for Eq.(2) is a bounded linear operator valued function
Rt ∈ LX for t ≥ 0, having the following properties:
∙ (i) R0  I and |Rt|≤ Net, for some constants N and .
∙ (ii) For each x ∈ X, Rtx is strongly continuous for t ≥ 0.
∙ (iii) Rt ∈ LY for t ≥ 0. For x ∈ Y,R. x ∈ C10,;X ∩ C0,;Y and
R ′tx  ARtx  

0

t Bt − sRsxds

 RtAx  
0

t Rt − sBsxds for t ≥ 0.

In what follows we make the following assumptions :
H1: A is the infinitesimal generator of a strongly continuous semigroup on X.
H2: For all t ≥ 0, Bt is a closed linear operator fromDA to X, and Bt ∈ BY,X. For
any y ∈ Y, the map t → Bty is bounded differentiable and the derivative t → B ′ty is
bounded and uniformly continuous on R.

The resolvent operator plays an important role in the study of the existence of solutions and
in providing a variation-of-constants formula for nonlinear systems. We, however, need to
know when the linear system(2)has a resolvent operator. For more details on resolvent
operators, we refer the reader to [2, 6]. In actual fact, the following theorem gives a
satisfactory answer to this problem, and it will be used in this work to develop our main
results.
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Theorem 2.1.[2] Assume that (H1)-(H2) hold. Then there exists a unique resolvent operator
of the Cauchy problem(2).

Let us now give some results on the existence of solutions for the following
integrodifferential equation

v ′t  Avt  
0

t Bt − svsds  qt, for t ≥ 0,

v0  v0 ∈ X,
3

where q : 0,→ X is a continuous function.

Definition 2.2.[2] A continuous function v : 0, → X is said to be a strict solution of
Eq.(3) if
(i) v ∈ C10,;X ∩ C0,;Y,
(ii) v satisfies Eq.(3) for t ≥ 0.

Remark 2.1. From this definition, we deduce thatvt ∈ DA, the function Bt − svs is
integrable, for all t ≥ 0, and s ∈ 0, t.

Theorem 2.2.[2] Assume that (H1)-(H2) hold . If v is a strict solution of Eq.(3), then

vt  Rtv0  
0

t
Rt − sqsds, for t ≥ 0. 4

Accordingly, we we are able to state the following definition.

Definition 2.3.[2] For v0 ∈ X, a function v : 0, → X is called a mild solution of (3) if v
satisfies (4).

The next theorem provides sufficient conditions for the regularity of solutions of Eq. (3).

Theorem 2.3.[2] Let q ∈ C10,;X and v be defined by (4). If v0 ∈ DA, then v is a
strict solution of Eq.(3).

For convenience, we invoke from [5] the mild solution to (1)as follows.

Definition 2.4. A process ut, 0 ≤ t ≤ T, 0 ≤ T  , is called a mild solution of Eq.(1) if
(i) ut is Ft −adapted and continuous for t ≥ 0, almost surely,
(ii)For arbitrary t ∈ 0,T, P : 

0

t
‖us‖H

2 ds    1and almost surely

ut  Gt,ut  Rt0  G0,  
0

t
Rt − sFs,usds  

0

t
Rt − sHs,usdws. 5

To guarantee the existence and uniqueness of a mild solution to Eq.(1) the following much
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weaker conditions (instead of the global Lipschitz condition and linear growth) are listed.
(H3): The mappings F.  and H.  satisfy, for any ,  ∈ H and t ≥ 0, the following
non-Lipschitz condition:
‖Ft, − Ft,‖H

2  ‖Ht, − Ht,‖L2
0

2 ≤ ‖ − ‖C
2 ,

where .  is a concave nondecreasing function from R to R such that 0  0, u  0,
for u  0 and 

0
du
u  , e.g., u  u, 1

2    1.
(H4): There is an M  0 such that

0≤t≤T
sup ‖Ft, 0‖H

2 ∨ ‖Ht, 0‖L2
0

2  ≤ M.

(H5): The mapping Gt,x satisfies, when there exists K  0, such that for any ,  ∈ H and
t ≥ 0,
‖Gt, − Gt,‖H ≤ K‖ − ‖C.

To develop our main results we shall need in the sequel the following lemmas.

Lemma 2.1. ([12], theorem 1.8.2, p. 45) Let a  0, c  0 and  : R → R be a continuous
nondecreasing function, such that t  0 for all t  0. Let u(.) be a Borel measurable
bounded nonnegative function on [0, a], and assume v(.) to be a nonnegative integrable
function on [0, T]. If
ut ≤ c  

0

t vsusds, ∀ t ∈ 0,a,

then
ut ≤ J−1 Jc  

0

t vsds ,

holds for all t ∈ 0,a such that Jc  
0

t vsds ∈ DomJ−1, where J  
0

 ds
s , on   0,

and J−1 is the inverse function of J. In particular, if, moreover, c  0 and 
0

ds
s  , then

ut  0 for all t ∈ 0,a.

Lemma 2.2. ([11], lemma1) For x,y ∈ H and 0  c  1, the following inequality is true.
‖x‖H

2 ≤ 1
1−c ‖x − y‖H

2  1
c ‖y‖H

2 .

3. Existence and Uniqueness

In this section, we move to study the existence and uniqueness of mild solutions to neutral
stochastic partial functional integrodifferential equations under a non-Lipschitz condition and a
weakened linear growth condition. To complete our main results, we need to develop several
lemmas which will be utilized in the sequel.

Invoke the following Picard iteration which is defined by
u0t  Rt0 for t ∈ 0,T,
u0t  t for t ∈ −r, 0,

and un for n ≥ 1 is defined by
unt  t for t ∈ −r, 0,
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and
unt  Gt,ut

n  Rt0  G0,  
0

t Rt − sFs,us
n−1ds

 
0

t Rt − sHs,us
n−1dws, t ∈ 0,T. 6

Lemma 3.1. Let the hypotheses (H1)-(H5)hold and K  1. Then there is a positive
constant C̃ , which is independent of n ≥ 1, such that for any t ∈ 0,T,

E sup
0≤t≤T

‖unt‖H
2 ≤ C̃. 7

Proof. For 0 ≤ t ≤ T, it follows easily from (6) that

E
0≤t≤T
sup ‖unt  Gt,ut

n‖H
2 ≤ 3E

0≤s≤t
sup ‖Rt0  G0,‖H

2

3E
0≤t≤T
sup 

0

t Rt − sFs,us
n−1ds

H

2

3E
0≤t≤T
sup 

0

t Rt − sHs,us
n−1dws

H

2

: 3I1  I2  I3.

8

Employing the assumption (H5) results with
I1 ≤ M11  K2E‖‖C

2 , 9
where
M1 

0≤t≤T
sup ‖Rt‖2.

On another note, in view of (H4), we deduce from Hölder’s inequality that
I2 ≤ T E

0≤t≤T
sup 

0

t
‖Rt − sFs,us

n−1 − Fs, 0  Fs, 0‖H
2 ds

≤ 2TM1 MT  
0

T E‖us
n−1‖C

2 ds . 10

Next, according to Liu ([5], Theorem 1.2.6, p. 14]) together with (H4), there exists a constant
C  0 such that

I3 ≤ C 
0

T
‖Hs,us

n−1 − Hs, 0  Hs, 0‖L2

0 ds

≤ 2C MT  
0

t E‖us
n−1‖C

2 ds . 11

Since u is concave on u ≥ 0, then there is a pair of positive constants a, b such that
u ≤ a  bu.

Putting (9)-(11) into (8) yields, for some positive constants C1 and C2, that
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E sup
0≤t≤T

‖unt  Gt,ut
n‖H

2 ≤ C1  C2 
0

T
E‖us

n−1‖C
2 ds. 12

While, by Lemma 2.2 for K  1, it follows that
E

0≤t≤T
sup ‖unt‖H

2  ≤ 1
1−K E

0≤t≤T
sup ‖unt  Gt,ut

n‖H
2  1

K E
0≤t≤T
sup ‖Gt,ut

n‖H
2

≤ 1
1−K E

0≤t≤T
sup ‖unt  Gt,ut

n‖H
2  K E

0≤t≤T
sup ‖unt‖H

2   K E‖‖C
2 ,

which further implies that
E

0≤t≤T
sup ‖unt‖H

2  ≤ 1
1−K2 E

0≤t≤T
sup ‖unt  Gt,ut

n‖H
2  K

1−K E‖‖C
2 .

Thus, by (12) we have

E
0≤t≤T
sup ‖unt‖H

2  ≤ C1

1−K2  C2T
1−K2  K

1−K E‖‖C
2  2C2

1−K 0
T

0≤≤s
sup ‖un−1‖H

2 ds.

Observing that

1≤n≤k
max E

0≤t≤T
sup ‖un−1t‖H

2 ≤ E‖‖C
2 

1≤n≤k
max E

0≤t≤T
sup ‖unt‖H

2 ,

allows, for some positive constants C3 ,C4, to write

1≤n≤k
max E

0≤t≤T
sup ‖unt‖H

2 ≤ C3  C4 E 
0

T

1≤n≤k
max E

0≤≤s
sup ‖un‖H

2 ds.

Now, an application of the well-known Gronwall’s inequality yields that

1≤n≤k
max E

0≤t≤T
sup ‖unt‖H

2 ≤ C3  expC4T.

Since k is arbitrary, the required assertion (7) directly follows. 

Lemma 3.2. Let the conditions H1 − H4be satisfied.We further assume that

K  1. 13

Then there exists a positive constant
~
K such that, for all 0 ≤ t ≤ Tand n,m ≥ 1,

E sup
0≤s≤t

‖unms − uns‖H
2 ≤

~

K 
0

t
 E sup

0≤l≤s
‖unm−1s − un−1s‖H

2 ds. 14

Proof. From(6) it is easy to see that, for any 0 ≤ t ≤ T,
E

0≤s≤t
sup ‖unms − uns  Gs,us

nms − Gs,us
ns‖H

2

≤ 2E
0≤s≤t
sup 

0

s Rs − lFl,ul
nm−1 − Fl,ul

n−1dl
H

2

2E
0≤s≤t
sup 

0

s Rs − lHl,ul
nm−1 − Hl,ul

n−1dwl
H

2
: J1  J2.

The proof of Lemma3.1 indicates the existence of a positive constant C5 satisfying
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J1  J2 ≤ C5 0
t
 E

0≤l≤s
sup ‖unm−1l − un−1l‖H

2 ds.

Moreover, Lemma3.1 and (H5) imply that
E

0≤s≤t
sup ‖unms − uns‖H

2 ≤ 1
1−K E

0≤s≤t
sup ‖unms − uns  Gs,us

nms − Gs,us
ns‖H

2

 K E
0≤s≤t
sup ‖unms − uns‖H

2 .

≤ C5
1−K 0

t
 E

0≤l≤s
sup ‖unm−1l − un−1l‖H

2 ds  K E
0≤s≤t
sup ‖unms − uns‖H

2 .

So the desired assertion (14) follows from the validity of (13). 

It is possible now to state our main result.

Theorem 3.1. Under the conditions of Lemma 3.2, then Eq.(1)admits a unique mild solution.

Proof. Uniqueness: Denote by u1t and u2t two mild solutions to (1). In the same way as
Lemma3.2 was proved,we can show that, for some D  0,

E
0≤s≤t
sup ‖u1s − u2s‖H

2 ≤ D 
0

t
 E

0≤l≤s
sup ‖u1l − u2l‖H

2 ds.

This, together with Lemma3.2, leads to
E

0≤s≤t
sup ‖u1s − u2s‖H

2  0,

which further implies that u1s  u2s almost surely for any 0  t ≤ T.
Existence: Following also the proof of Lemma3.2, there exists a positive constant C such that,
for all 0 ≤ t ≤ T and n,m ≥ 1,

E
0≤s≤t
sup ‖un1s − um1s‖H

2 ≤ C 
0

t
 E

0≤l≤s
sup ‖uns − ums‖H

2 ds.

Integrating both sides and applying the Jensen’s inequality gives


0

t E
0≤l≤s
sup ‖un1l − um1l‖H

2 ds ≤ C 
0

t 
0

s
 E

0≤l≤s
sup ‖unl − uml‖H

2 dlds

 C 
0

t s 
0

s
 E

0≤l≤s
sup ‖unl − uml‖H

2 1
s dlds

≤ Ct 
0

t
 

0

s E
0≤l≤s
sup ‖unl − uml‖H

2 1
s dl ds.

Then
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vn1,m1t ≤ C 
0

t
vn,msds,

where
vn,mt  1

t 0
t E

0≤l≤s
sup ‖unl − uml‖H

2 ds.

While by Lemma3.1, it is easy to see that

n,m→
sup vn,mt  .

So letting vt : lim
n,m→
sup vn,mtand invoking the Fatou’s lemma yields

vt ≤ C 
0

t
vsds.

Next, apply Lemma3.2 to realize immediately, for any t ∈ 0,T, that vt  0 . This further
means that unt, : n ∈ N is a Cauchy sequence in L2.So there is a u ∈ L2 satisfying

n→
lim 

0

T E
0≤s≤t
sup ‖uns − us‖H

2  0.

Moreover, by Lemma3.2, it is easy to conclude that E‖ut‖H
2 ≤ C . Hence in what follows we

claim that ut is a mild solution to Eq.(1). Indeed, on one hand,by (H4), the Hölder’s
inequality, according Liu ([5], Theorem 1.2.6, p. 14) and letting n → , for 0 ≤ t ≤ T, we can
also claim, for t ∈ 0,T, that


0

t Rt − sFs,us
n−1 − Fs,usds

H

2
→ 0, E 

0

t Rt − sHs,us
n−1 − Hs,usds

H

2
→ 0.

On the other hand, by applying (H5), we can also claim, for t ∈ 0,T, that
E‖Gs,us

n − Gs,us‖H
2 ≤ K2E

0≤s≤t
sup ‖uns − us‖H

2 → 0.

Now taking limits in both sides of (6) leads, for t ≥ 0, to
ut  Rt0  G0, − Gt,ut  0

t Rt − sFs,usds  
0

t Rt − sHs,usdws.

This is an illustration that u is a mild solution to of Eq.(1) on [0, T]. 

4. Application

We conclude this work with the example
∂
∂t xt,  

−r

0 gt,xt  ,d  ∂2

∂2 xt,  
−r

0 gt,xt  ,d

 
0

t bt − s ∂2

∂2 xs,  
−r

0 gt,xt  ,d ds

 
−r

0 ft,xt  ,d  ht,xt  ,dwt for t ≥ 0 and  ∈ 0,

xt, 0  
−r

0 gt,xt  , 0d  0 for t ≥ 0

xt,  
−r

0 gt,xt  ,d  0 for t ≥ 0

x,  x0, for  ∈ −r, 0 and  ∈ 0,,

15
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where wtdenotes a R-valued Brownian motion, g, f, h : R  R → R are continuous
functions , b : R → R is continuous and x0 : −r, 0  0, → R is a given continuous
function such that x0.  ∈ L20, is F0-measurable and satisfies E‖x0‖2  .
Let H  L20, with the norm ‖.‖ and en : 2

 sinnx, n  1,2,3, denote the
complete orthonormal basis in H. Also let wt : ∑n1

 n nten n  0, where
nt are one-dimensional standard Brownian motions mutually independent on a usual
complete probability space , F, Ftt≥0,P. Define then A : H → H where A  ∂2

∂z2 ,

with the domain DA  H20, ∩ H0
10,.

Consequently Ah  −∑n1
 n2  h,en  en, h ∈ DA, where en, n  1,2,3,, is also

the orthonormal set of eigenvectors of A.
It is well-known thatA is the infinitesimal generator of a strongly continuous semigroup on

H, thus H1 is true. Furthermore let B : DA ⊂ H → H, be the operator defined by
Btz  btAz for t ≥ 0 and z ∈ DA. We may suppose then that
(i) There exists a positive constant Lg, r Lg ≥ 0, such that

|gt,1 − gt,2|2 ≤ Lg|1 − 2|2 .
(ii) There exists a constant Lf, 0  r2 Lf  1, such that
|ft,1 − ft,2|2 ≤ Lf ‖1 − 2‖C

2 .
(iii) There exists a constant Lh, 0  r Lh  1, such that
|ht,1 − ht,2|2 ≤ ‖1 − 2‖C

2 .
Also let C  C−r, 0;H and define the operators G,F,H : R  C → H by
Gt,  

−r

0 gt,d for  ∈ 0, and  ∈ C,
Ft,  

−r

0 ft,d for  ∈ 0, and  ∈ C,
Ht,  ht, for  ∈ 0, and  ∈ C.
Now if we put

ut  xt, for t ≥ 0 and  ∈ 0,
  x0, for  ∈ −r, 0 and  ∈ 0,.

Then Eq. (15) takes the following abstract form

d ut  Gt,ut  Aut  Gt,utdt  
0

t Bt − sus  Gs,usds  Ft,ut dt

 Ht,utdwt, for t ∈ 0,T, 16
u0.    ∈ C  C−r, 0;H , where r  0.

Moreover, if b is bounded and C1 function such that b′ is bounded and uniformly continuous,
then (H1) and (H2) are satisfied and hence, by Theorem2.2, Eq. (2) has a resolvent operator
Rtt≥0 on H. The assumption i implies moreover that
‖Gt,1 − Gt,2‖L20,  ≤ r Lg ‖1 − 2‖C

2 .
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And by assumptions (ii) and (iii) we have
‖Ft,1 − Ft,2‖L20,  ≤ r2 Lf ‖1 − 2‖C

2 .

‖Ht,1 − Ht,2‖L20,  ≤ r Lh ‖1 − 2‖C
2 .

Thus, all the stipulations of Theorem 3.3 are fulfilled, and the existence of a unique mild
solution of Eq.(15) has been demonstrated.
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