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Abstract. In this paper, we apply Girsanov’s theorem on the change of probability measures
to obtain an approximation result and a numerical method for certain classes of Markovian
coupled forward—backward stochastic differential equations. As a deterministic application,
by using the Feynman-Kac’s formula, we obtain a new time-space discretization scheme for
certain classes of quasi-linear parabolic partial differential equations.

Key words : Backward Stochastic Differential Equations, Parabolic Partial Differential
Equations, Discrete Time Approximation, Monte Carlo Simulation, Girsanov’s Theorem,
Feynman-Kac’s Formula.

AMS Subject Classifications : 60H10, 60K30, 60H35

1. Introduction

Backward stochastic differential equations, (BSDEs for short), represent a new class of
stochastic differential equations, (SDEs), whose value is prescribed at a terminal time T.
BSDEs have received considerable attention in the probability literature as they provide a
probabilistic formula for the solution of certain classes of quasi-linear parabolic partial
differential equations, (PDEs), that are related to viscosity solutions of these PDEs. The theory
of BSDEs has found wide applications in areas such as stochastic control, theoretical
economics and mathematical finance problems, (we refer the interested reader,e.g. , to El
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Karoui et al. [5] for several applications to option pricing). As of 1973, linear BSDEs were
first introduced by Bismut [2], who used them to study stochastic optimal control problems in
the stochastic version of Pontryagin’s maximum principle. Then in 1990, Pardoux and Peng [9]
considered the general case of BSDEs and established existence and uniqueness of their
solutions under some assumptions such as Lipschitzianity of the generator. More precisely,
they studied BSDEs of the form:

Yt    
t

T
fs,Ys,Zsds − 

t

T
ZsdWs, t ∈ 0,T,

where Wt0≤ t ≤T is a d-dimensional Brownian motion on a filtered probability space
,ℱ, ℱt0≤ t ≤T,P, T is a fixed finite horizon, ℱt0≤ t ≤T is the natural Brownian filtration.
The random function f : 0,T    k  kd → k is the generator of the BSDE, and the
k-valued ℱT-adapted random variable  is the terminal condition. The existence of the
uniquely adapted solutions of these BSDEs is proved in [9] under the assumptions ℵ1:
∙ f is uniformly Lipschitzian in y, z, i.e., there exists a finite positive constant Cf, such that
for all y, z,y ′, z′,

|ft,y, z − ft,y ′, z′| ≤ Cf |y − y ′|‖z − z′‖.
∙  and ft, 0, 0t∈0,T satisfies the square integrability condition:

E ||2  
0

T
|ft, 0, 0|2 dt  .

It should be noticed that in the case of linear BSDEs, valued in , and defined as:

Yt    
t

T
asYs  bs

Zs  csds − 
t

T
Zs
dWs, 0 ≤ t ≤ T,

the previous assumptions become ℵ2:
∙ a and b are bounded progressively measurable processes valued in  and k,
∙  and c satisfy:

E ||2  
0

T
|ct|2 dt  ,

and we have explicitly
Yt  Γt

−1E ΓT  
t
T

csΓsds Ft , 1

where

Γt  exp 
0

t
bsdWs − 1

2 0

t
|bs|2ds  

0

t
asds .

Formula (1) will be useful to prove the main approximation in this paper. It was also used
in [7] and [11] to prove a useful comparison theorem for BSDEs. Recently, in 1992, Pardoux
and Peng [10] showed that the solution of some Markovian BSDEs is related to some forward
classical SDEs, corresponds to a probabilistic solution of a non-linear PDEs, and obtained a
generalization of the classical Feynman Kac’s formula. This probabilistic representation leads
to a numerical method for solving PDEs, relying on Monte-Carlo simulations of the forward
diffusion process X, whose convergence rate does not depend on the dimension of the problem.

Let us consider the parabolic heat equation:
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∂v
∂t  1

2 x v  0, 0,T  k,

vT, .   h.  k.
2

It is well known that the solution to (2) is given by

vt,x   hy 1
4T− t

k
2

e
− x − y2

4T − t dy.

From the Gaussian distribution of Wt, we observe that the solution v can also be represented
as:
vt,x  Ehx  WT−t, t,x ∈ 0,T  k,

which gives a Monte-Carlo method for computing an approximation of v by the empirical
mean:

vt,x ≃ v̄nt,x : 1
n ∑

i 1

n

hx  WT− t
i ,

where Wi1≤ i ≤n is an n-sample drawn from an exact simulation of W. The convergence of v̄n

to v is ensured by the law of large numbers, when n goes to infinity. While the rate of
convergence, obtained from the central limit theorem, is equal to 1

n , and independent of the
dimension k of the heat equation. More generally, let us consider the linear PDE:

∂v
∂t  ℑv  f  0 0,T  k,

vT, .   h.  k,
3

where ℑ is the second order Dynkin operator:
ℑv  bx.Dxv  1

2 trxxDx
2v.

Under standard conditions on the functions b, , f and h defined on k, there exists a unique
solution v to (3), which may be represented by the Feynman-Kac formula:

vt,x  E 
t
T

fs,Xs
t,xds  hXT

t,x , t,x ∈ 0,T  k, 4

where Xt,x is the solution to the (forward) diffusion process:

Xs
t,x  x  

t

s
bXu

t,xdu  
t

s
Xu

t,xdWu, t ≤ s ≤ T,

starting from x ∈ R at time t. Notice that the Feynman-Kac formula (4) can easily be derived
from Itô’s formula when v is smooth. Indeed, in this case, by defining the pair of processes
(Y,Z):
Yt : vt,Xt, Zt : XtDx.vt,Xt, 0 ≤ t ≤ T

and applying Itô’s formula to vs,Xs between t and T with v satisfying the PDE (3), we obtain

Yt  hXT  t
T

fs,Xsds − 
t
T

ZsdWs, 0 ≤ t ≤ T. 5

Equation (5) can be viewed as a BSDE in the pair of adapted processes Y,Z with terminal
condition hXT. Then by taking the conditional expectation in (5), we retrieve the
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Feynman-Kac’s formula (4).
In this paper, we use the Girsanov’s theorem on the change of probability measure to

obtain an approximation result and a numerical method for certain classes of Markovian
BSDEs. As a deterministic application, by using the Feynman-Kac’s formula, we devise a
time-space discretization scheme for certain classes of quasi-linear parabolic PDEs.

2. The Main Results

Here we entertain classes of one-dimensional Markovian BSDEs driven by one-dimensional
Brownian motion.

2.1. An approximation result for Markovian BSDEs

Consider the Markovian BSDEs
Yt  hXT  t

T
fs,Xs,Ys,Zsds − 

t
T

ZsdWs, t ∈ 0,T, 6

where X is a forward diffusion process of dynamics

Xt  x  
0

t
bs, Xsds  

0

t
s,XsdWs,

with x ∈  and b, , f and h are valued in  with Lipschitzianity and square integrability
conditions. We invoke the following numerical approximation of the BSDE (6), and refer the
interested reader, e.g., to [1], [3] and [6]. Let  be a partition of time points
0  t0  t1 . . . . tn  T of 0,T, with a fixed time step Δti : ti 1 − ti and a corresponding
ΔWti : Wti 1

− Wti to write

Xt0
  x, Ytn

  hXT
,

Xti 1

  Xti
  bti,Xti

Δti  ti,Xti
ΔWti , i ≤ n,

Zti
  E Yti

 Wti
ti

ℱti , i ≤ n,

Yti
  EYti 1

 ∣ ℱti  fti,Xti
,Yti

,Zti
  ti, i ≤ n.

7

The practical implementation of the numerical scheme (7) requires the computation of
conditional expectations which can be approximated for example by non-parametric regression
methods, based on the projection on a set of basis functions, (see for example [6]), however
this method is highly technical in practice which is the reason why BSDEs have not been used
by practitioners yet.

Now we begin the statement and proof of the main result of this section. We start with
nominal reference deterministic (non random) trajectories denoted by x̄, ȳ, z̄, and defined viz
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x̄t  x  
0

t
bs, x̄sds,

z̄t  EZt,

ȳt  EhXT  t
T

Efs, x̄s, ȳs, z̄sds, t ∈ 0,T.

8

Clearly by the Lipschitzianity assumptions, the triplet x̄, ȳ, z̄ exists. So it is possible to
write

ãs 
∂f s, x̄s, ȳs, z̄s

∂x ,

b̃s 
∂f s, x̄s, ȳs, z̄s

∂y ,

c̃s 
∂f s, x̄s, ȳs, z̄s

∂z ,

ẽs  fs, x̄s, ȳs, z̄s − Efs, x̄s, ȳs, z̄s − z̄sc̃s,

Xs  Xs − x̄s,

g̃s  ãsXs  ẽs.

Theorem 2.1. If the processes b̃ and g̃ satisfy the assumptions H2, and the process c̃s
satisfies Novikov’s condition, then there exists a new probability measure Q such that the
following approximation
Yestim

t  ȳt  Γt
−1EQ ΓThXT − EhXT  

t

T
g̃sΓsds|ℱt ,

of the solution Y to the BSDE (6), holds. Here "estim" stands for the estimated value.

Proof. We define the error as the difference between Yt and ȳt viz

Yt  Yt − ȳt. Next by

combining (6) and (8), we obtain the following dynamics for

Yt

Yt  h̃XT  t
T 

f s,Xs,Ys,Zsds − 
t
T

ZsdWs, t ∈ 0,T, 9

where

h̃XT  hXT − EhXT,

f s,Xs,Ys,Zs  fs,Xs,Ys,Zs − Efs, x̄s, ȳs, z̄s.

To arrive at a linear approximation of the BSDE (9), we make a Taylor series expansion of
f̃s,Xs,Ys,Zs around x̄s, ȳs, z̄s, (assuming that the partial derivatives exist):

f s,Xs,Ys,Zs ≈


f s, x̄s, ȳs, z̄s 

∂f s, x̄s, ȳs, z̄s

∂x Xs 
∂f s, x̄s, ȳs, z̄s

∂y

Ys 

∂f s, x̄s, ȳs, z̄s

∂z Zs − z̄s.

This leads to the approximate linear model:

Yt  h̃XT  t

T
b̃s

Ys  c̃sZs  g̃s ds − 

t
T

ZsdWs, t ∈ 0,T. 10

Now, define
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
Zt  exp −

0

t
c̃sdWs − 1

2 0
t

c̃s
2ds ,

QA  
A

ZT dP, ∀A ∈ ℱ,

Wt
Q  Wt − 

0

t
c̃s ds,

and suppose that the process c̃ satisfies the Novikov’s condition:

E exp 1
2 0

T
|c̃s|2ds  .

Then by the well known Girsanov’s theorem (see for example cite: O), Wt
Q0≤ t ≤T is a

Brownian motion under the new probability measure Q. Therefore, (10) becomes

Yt  h̃XT  t

T
b̃s

Ys  g̃s ds − 

t
T

ZsdWs
Q, t ∈ 0,T. 11

Satisfaction of the assumptions ℵ2 by b̃ and g̃ and of (1), leads to

Γt  exp 
0

t
b̃sds ,


Yt  Γt

−1EQ ΓTh̃XT  
t

T
g̃sΓsds|ℱt ,

which completes the proof. 

Remark 2.1. If the generator f is deterministic (non random), then f̃s, x̄s, ȳs, z̄s  0 and we
have:

Yestim
t  ȳt  Γt

−1ΓTEQhXT|ℱt − EhXT  Γt
−1 

t

T
EQg̃s|ℱtΓsds.

Example 2.1. Consider the following nonlinear BSDE:

−dYt  −Yt1 − Yt 3
4 − Yt dt − ZtdWt,   hXT, t ∈ 0,1, 12

where hy  1
1 y

x
and the process Xt  xexp −Wt − t

4 is the solution to the forward

diffusion process:

Xt  x  
0

t Xs
4 ds − 

0

t
Xs dWs, x ∈ ∗.

In this equation the process Y represents the potential of a membrane. This equation is
called the stochastic FitzHugh-Nagumo equation, (see 12) and is used in physics, genetics
and biology, among other fields. The exact adapted solution of (12) is

Yreal
t ,Zreal

t   1
1  exp −Wt − t

4
,

exp −Wt − t
4

1  exp −Wt − t
4

2 .

The relationship:
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−Ys1 − Ys 3
4 − Ys 

YsZs
4 1 − 3

x Xs,
indicates that the BSDE (12) is equal to the BSDE:

Yt  hXT  t
T YsZs

4 1 − 3
x Xsds − 

t
T

Zs dWs. 13

Clearly the generator in (12) satisfies the Lipschitzianity assumptions, but the generator in
13 does not. However, we can use 13 to test the sensitivity of our numerical method to
dependencies of the driver of the BSDE on the processes X and Z, (see the numerical results
obtained below).

In this case, we have: x̄t  xexp t
4 and

f s, x̄s, ȳs, z̄s 
ȳsz̄s

4 1 − 3
x x̄s, f̃ s, x̄s, ȳs, z̄s  0,

ãs  −3
4x ȳsz̄s, b̃s 

z̄s
4 1 −

3
x x̄s,

c̃s 
ȳs
4 1 − 3

x x̄s, ẽs 
ȳsz̄s

4 1 − 3
x x̄s.

Therefore

Yt  exp 

t

T z̄s
4 1 − 3

x x̄sds EQhXT|ℱt − EhXT

 exp −
0

t z̄s
4 1 − 3

x x̄sds 
t

T
−3
4x ȳsz̄s −2x̄s  x

3 exp 
0

s z̄u
4 1 − 3

x x̄udu ds

 exp −
0

t z̄s
4 1 − 3

x x̄sds 
t

T
−3
4 ȳsz̄sEQexp−Ws − s

4 |ℱt 

exp 
0

s z̄u
4 1 − 3

x x̄udu ds

: It
1  It

2  exp −Wt − t
2 It

3,
where we have used in the last equality the fact that by the martingale property, we have :
EQexp−Ws − s

4 |ℱt   exp −Wt − t
2 exp s

4 .
Finally, we will develop a discretization time scheme and a Monte Carlo simulation (with
ti  T

n ) as follows :
1. Yestim

T  YT  .
2. The deterministic nominal reference trajectory z̄ is given by (7) as:

z̄ti
 n

T E Yestim
ti 1  Wti ,

then, we apply the Monte Carlo simulation.
3. The deterministic nominal reference trajectory ȳ is given by the Euler scheme:

ȳT  EhXT,

ȳti
 ȳti 1

 
ti

ti 1 ȳsz̄s
4 1 − 3

x x̄s ds, i ≤ n.
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Therefore

ȳT  EhXT,

ȳti ≈
ȳti 1

1− T
4n z̄ti

3T
4 x n x̄ti z̄ti

, i ≤ n.

4. We consider It
1  expIt EQhXT|ℱt − EhXT , where It is obtained by the

Euler scheme:

IT  0,

Iti ≈ Iti 1


z̄ti
4 1 − 3

x x̄ti
T
n , i ≤ n.

Use, further, the Markov property and the Monte Carlo method for simulation of the term
EQhXT|ℱt − EQhXT .

5. Then let

Jt
2  It

2

exp −
0

t z̄s
4 1−

3
x x̄sds

 
t
T −3

4x ȳsz̄s −2x̄s  x
3

exp 
0

s z̄u
4 1 − 3

x x̄u du ds,

to write

JT
2  0,

Jti

2  Jti1
2 − 3

4x ȳti z̄ti − 2x̄ti 
x
3 exp 

0

ti z̄s
4 1 − 3x̄s

x ds T
n ,

and

Iti
2

exp −
0

ti z̄s
4 1−

3
x x̄sds


Iti  1

2

exp −
0

ti1 z̄s
4 1−

3
x x̄sds

− 3
4x ȳti z̄ti −2x̄ti 

x
3 exp 

0

ti z̄s
4 1 − 3

x x̄s ds T
n .

Therefore

IT
2  0,

Iti
2 ≈ Iti 1

2 expIti − Iti 1
 − 3

4x ȳti z̄ti −2x̄ti 
x
3

T
n , i ≤ n.

6. In the same way, it is possible to write

IT
3  0,

Iti
3 ≈ Iti 1

3 expIti − Iti 1
 − 3

4 ȳti z̄ti exp ti
4

T
n , i ≤ n.
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7. Finally, we have : Yestim
t 


Yt  ȳt.

By using our main (R)-codes, we obtain for x  1 the results exhibited in Figures 1 and
2.
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Clearly, we can see the sensitivity of our numerical method to linkage of the driver of the
BSDE with the processes X and Z.

2.2. Markovian BSDEs and PDEs

In this subsection, as an application of theorem 2.1 we use a generalization of the classical
Feynman-Kac’s formula, which establishes a connection between BSDEs and PDEs. For more
details of this fact, we refer the interested reader, to El Karoui et al. [5] and [10]. This leads to
a time-space discretization scheme for certain classes of quasi-linear PDEs.

For any given t,x ∈ 0,T  , consider the following classical Itô’s SDE, defined on
0,T,

Xs
t,x  x  

t
s

bu,Xu
t,xdu  

t
s
u,Xu

t,xdWu, t ≤ s ≤ T, 14

starting from x ∈  at time t. We then consider the associated BSDE,
Ys

t,x  hXT
t,x  

s
T

fs,Xu
t,x,Yu

t,x,Zu
t,xdu − 

s
T

Zu
t,xdWu, t ≤ s ≤ T. 15

Here, standard Lipschitzianity conditions are assumed on the coefficients.
The measurability properties of the solution Xs

t,x, s ∈ t,T of (14) still hold for the solution
Ys

t,x,Zs
t,x, s ∈ t,T of (15). More precisely, the solution of the BSDE (15) is adapted to the

future -algebra of W after t, that is, it is ℱs
t -adapted where for each s ∈ t,T,

Fs
t  Wu − Wt, t ≤ u ≤ s, (see Proposition 4.2, in [5], page 44). Let v be a function that is

smooth enough to be able to apply Itô’s formula to vs,Xs
t,x. u is supposed to be the solution of

the following quasi-linear PDE:

∂v
∂t  ℑv  f t,x,vt,x,t,x ∂v

∂x  0 0,T  ,

vT, .   h.  ,
16

where ℑ is the second order Dynkin operator:

ℑv  bt,x ∂v∂x  1
2 

2t,x ∂
2v
∂x2 .

Then vt,x  Yt
t,x which is deterministic, with Ys

t,x,Zs
t,x, s ∈ t,T is the unique solution of

BSDE (15). Also, we have:

Ys
t,x,Zs

t,x  vs,Xs
t,x,s,Xs

t,x ∂v
∂x s,Xs

t,x, t ≤ s ≤ T. 17

Example 2.2. Consider the so-called “deterministic KPZ’ equation, (see [4]):

∂v
∂t t,x 

1
2
∂2v
∂x2 t,x 

1
2
∂v
∂x t,x

2
 0, t,x ∈ 0,T  ,

vT,x  hx, x ∈ ,
18

Such an equation admits too a "Cole-Hopf explicit solution" that writes as
vt,x  logEexphx  WT−t.

Clearly the BSDE associated with (18) is:
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Yt  hXT  t
T 1

2 Zs
2ds − 

t
T

ZsdWs, 19

with b  0,   1 and Xt  x  Wt.
The changes of variables Pt  expYt and Qt  Zt expYt with the Itô’s formula, lead to

the equation:

Pt  exphXT − 
t

T
QsdWt,

and the solution of (19) is given by:
Yt  lnEexphXT|ℱt.

Using the Markov property of W, we have:
Yt  lnEexphY  x  Wt,

where Y  WT−t  N0,T − t.
Therefore

vt,x  Y0  logEexphx  WT−t .

Finally, by using the Monte Carlo simulation for hx  sin2x and our (R)-code, we obtain
the results for vt,x, shown in Figure 3.

Consider now the translated Brownian motion B and its associated filtration defined by:
Bs  Wst − Wt , ℱs

′  ℱst
t , 0 ≤ s ≤ T − t. Let Xs

′ , 0 ≤ s ≤ T − t be the ℱs
′ adapted

solution of the SDE

Xs
′  x  

0

s
bu,Xu

′ du  
0

s
u,Xu

′ dBu,

and let Ys
′ ,Zs

′ , 0 ≤ s ≤ T − t be the solution of the associated BSDE. By uniqueness, we have
Xs

t,x  Xs−t
′ and Ys−t

′ ,Zs−t
′   Ys

t,x,Zs
t,x, t ≤ s ≤ T. Consequently, Xs

t,x and Ys
t,x,Zs

t,x are ℱs
t
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adapted. Finally, we are able to simulate the solution of the PDE (16) as follows:
1. We apply theorem 2.1 to X′,Y′,Z′,
2. Use the formulas: Ys

t,x  Ys−t
′ and vt,x  Yt

t,x,
3. Finally, take vt,x  Y0

′ .

Example 2.3. Use the same example given in the previous application of theorem 2.1,
(subsection 2.1). Here we have the estimated solution: vt,x  Yestim

0 and the real (exact)
solution given by 17. Computations of the error in vt,xestim relative to vt,x are finally
exhibited in Figure 4.
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