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Abstract. We propose a variant of the conjugate gradient method for solving large-scale
systems of symmetric nonlinear equations, in which the spectral secant condition and
conjugate gradient ideas are combined. Using an approximate norm descent, we show that the
proposed method has global convergence properties. Under appropriate conditions, numerical
results for benchmark test functions, demonstrate an improved efficiency of this method over
other existing alternatives.
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1. Introduction

Consider the following nonlinear system of equations:
Fx  0, 1
where F : Rn → Rn is a nonlinear, continuous mapping and is assumed to satisfy the
assumptions that follow.

Assumption 1.
A1 There exists x∗ ∈ Rn such that Fx∗  0.
A2 F is a continuously differentiable mapping.
A3 The Jacobian is symmetric.
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The renowned method for finding the solution to (1) is the Newton’s method. The method
is simple to implement, and generates an iterative sequences xk from a given initial guess x0
in a neighborhood of x∗ via
xk1  xk − F′xk

−1Fxk, 2
where k  0,1,2, . . . and F ′xk is the Jacobian matrix.

A quasi-Newton’s method is another variant of Newton-type methods that replaces the
Jacobian or its inverse, with an approximation which can be updated at each iteration [12]. Its
updating scheme is given by
xk1  xk − Bk

−1Fxk, 3
where Bk is the approximation of the Jacobian at xk and it is updated at each iteration. There
are many types of quasi-Newton methods, but the most efficient and successful ones are
Broyden, Fletcher, Goldfarb and Shanno methods, denoted as BFGS [13], where the BFGS
update is defined as:

Bk1  Bk −
Bk sk skT Bk
skT Bk sk


yk ykT

ykT sk
, 4

with sk  xk1 − xk and yk  Fxk1 − Fxk.
The rationale behind quasi-Newton methods is to do with the evaluation cost of the

Jacobian matrix [12, 8]. Steepest descent is also among the earliest methods for solving
nonlinear systems of equations, but is rarely used due to its slow convergence rate.
Understanding the convergence properties of this method can, nevertheless, lead to a better
understanding of many more sophisticated optimization methods [3, 6, 10].

Based on this fact, the well-known conjugate gradient method is a promising development
for large-scale unconstrained optimization problems due to its simplicity and low storage
requirement [1, 5]. The nonlinear conjugate gradient method came into existence in 1964, by
Fletcher and Reeves [1]. Since then the work on conjugate gradients became quite noticed in
the literature. Recently, the conjugate gradient metod has been extended to solve large-scale
nonlinear systems of equations [12].

Furthermore, also in recent years, much effort has been placed on developing and
constructing a new and simple formula for the conjugate gradient parameters to make the
method easier to apply to various other fields, with good numerical performance and global
convergence properties. Considerations like this, have led to the so-called Hybrid methods,
which as the name suggests, are based on two different methods. One of which has good
performance at the initial stage, like the gradient methods, and the other has good performance
at the final stage, like Newton’s methods [13].
The most frequently used line search in practice is the inexact line search [5, 6, 8], which is

chosen in such a way that the function values along the ray xk  αk dk, αk  0 decreases, i.e.,
‖Fxk  αkdk‖ ≤ ‖Fxk‖. 5

Most of the approaches to solving systems of nonlinear equations are single direction
methods. One of the advantages, however, of the double direction method over single direction
is the presence of two direction vectors which work jointly as a correction factor towards
boosting the convergence of the system. The presence of the two direction vectors help the
system immensely in such a way that if one of the directions fails, the other direction will
correct the system automatically [3]. Whereas in a single direction scheme, if the direction fails
the whole process fails. To improve the effectiveness of the algorithm for solving such systems
of nonlinear equations, Halilu & Waziri, [7], presented a double direction iterative scheme
given by
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xk1  xk  αkck  αk
2 dk , 6

where xk1 represents a new iterative point, xk is the previous iterative point, αk is the step
length, while ck and dk are the search directions respectively.

Furthermore (1) can emerge either from an unconstrained optimization problem, a saddle
point problem, or from an equality constrained problem [8]. Let f be a norm function defined
by
fx  1

2 ‖Fx‖
2. 7

where f : Rn → R. The nonlinear equations (1) is equivalent to the following global
optimization problem
min fx, x ∈ Rn. 8

Our paper is organized as follows. In the next section, we present the proposed method.
The convergence results are presented in section 3, while some numerical results are presented
in section 4. Finally, a conclusion is provided in section 5.

2. Derivation of the Method

In this section, we introduce the two direction vectors in (6). In order to incorporate more
information of the iterates at each iteration and to guarantee rapid convergence towards the
solution, we suggest the first direction ck, to be defined as
ck  −Fxk, 9
while the second direction dk is to be derived by combining the direction presented in [14] with
the classical Newton’s direction. It should be noted that the direction presented in [14] is
defined as

dk 
−Fxk, if k  0,

−Fxk  βk
PRPdk−1 − vk yk , if k ≥ 1,

10

where yk  Fxk1 − Fxk,
βk
PRP  F

Txk1yk
||Fxk||2

, 11

and

vk 
FTxk1 dk1
||Fxk||2

. 12

However, the Newton’s direction, dk, is given by
dk  −J

−1xkFxk, 13
where Jxk is the Jacobian matrix.
Combining (10) and (13), we have

−J −1xkFxk  −Fxk  βk dk−1 − vk yk . 14
Then multiplying both sides of (14) by Jxk leads to
−Fxk  −JxkFxk  βk Jxk dk−1 − vk Jxk yk . 15
From the spectral secant condition used in [9], we have
Jxk sk  θk yk , 16
where, sk  xk1 − xk  J −1xkθk yk , and yk  Fxk1 − Fxk, which after transposition
becomes
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skT JTxk  θk ykT . 17
It is vital to note that, for this work, we claim that the Jacobian matrix is symmetric,∀k. So

we accordingly have
sk
T Jxk  θk yk

T. 18
Pre-multiplication of both sides of (15) by skT and substitution of (18) in the result leads to:

−sk
TFxk  −θk yk

T Fxk  θk yk
T βk dk−1 − θk vk yk

T yk. 19
After a slight simplification in (19), our CG parameterβk becomes

βk 
θk yk − skT Fxk  θk vk || yk||2

θk ykT dk
, 20

where

θk 
sk
T sk
sk
T yk

,

see [12]. Having derived, in (20), the new CG parameter βk we present our direction using the
frame of the conjugate gradient method in the form

dk 
−Fxk, if k  0,

−Fxk  βkdk−1 − vk yk , if k ≥ 1,
21

where βk is defined in (20). Further substitution of (9) and (21) into the iterative procedure
given by (6), builds our scheme viz
xk1  xk  αk ck  αk

2 dk. 22
By this (22), the first direction is with a descent nature, but the second direction may not be

of descent nature, as such. An approximate norm descent line search described in [8], is used to
compute the step length αk via : let ω1,ω2, r ∈ 0,1 be constants, and let ηk be a given
positive sequence such that

∑
k  0


ηk  η  , 23

and
fxk − αkFxk  αk

2dk − fxk ≤ −ω1 ∥ αkFxk ∥
2 − ω2 ∥ αkdk ∥2  ηk fxk. 24

Furthermore, let ik be the smallest nonnegative integer i such that (24) holds for α  ri, and
αk  rik .
Now we present the algorithm of the proposed method as follows.

Algorithm 1. (MCGD)
STEP 1: Given x0, ϵ  10−4,d0  −Fx0, set k  0.
STEP 2: Compute Fxk.
STEP 3: If ∥ Fxk ∥ ≤ ϵ, then stop.
STEP 4: Compute step length αk (by (24)).
STEP 5: Set xk1  xk − αk Fxk  αk2 dk.
STEP 6: Compute Fxk1.
STEP 7: Compute βk (using (20)).
STEP 8: Update dk1(using (21)).
STEP 9: Set k  k  1, and go to STEP 3.
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3. Convergence Analysis

Our interest here is in the global convergence of our proposed method (MCGD). To begin
with, let Ω be the level set defined by:
Ω  x ∈ Rn | ∥ Fx ∥ ≤ e ∥ Fx0 ∥ , 25
where η is a positive constant such that (23) is satisfied. Here, we can easily see that the level
set Ω is bounded. In order to analyze the global convergence of the MCGD algorithm, we need
the following assumption.

Assumption 2.
In some neighborhood N of Ω the nonlinear function F is Lipschitz continuous i.e., there

exists a positive constant L  0, such that
∥ Fx − Fy ∥ ≤ L ∥ x − y ∥, ∀ x,y ∈ N. 26
From the level set, there exists a positive constantM1  0, such that
∥ Fx ∥ ≤ M1,∀x ∈ Ω. 27

Lemma 3.1. Let xnbe a sequence generated by the MCGD algorithm.Then xn ⊂ Ω.

Proof. From (24) we have ∀k,
fxk 1 ≤ 1  ηk fxk

≤ fx0
i  0

k

1  ηi

≤ fx0 1
k 1 ∑

i  0

k

1  ηi

k 1

≤ fx0 1  1
k 1 ∑

i  0

k

ηi

k 1

≤ fx0 1 

k 1

k 1
≤ e fx0.

Thus we have,
∥ Fxk1 ∥ ≤ e ∥ Fx0 ∥. 28
Then we can see that from (28) that xn ⊂ Ω. 

Lemma 3.2. Suppose that the assumption 2 holds and xk is generated by the MCGD
algorithm, then we have

k→
lim ∥ αk dk ∥

2  0, 29

and

k→
lim ∥ αk Fxk ∥

2  0. 30

Proof. From (24) and for all k  0,
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ω2 ∥ αk dk ∥2 ≤ ∥ Fxk ∥2 −∥ Fxk1 ∥2 − ω1 ∥ αk Fxk ∥2  ηk ∥ Fxk ∥2

≤ ∥ Fxk ∥
2 −∥ Fxk1 ∥

2  ηk ∥ Fxk ∥
2 . 31

Then by summing the above inequality, we have,

ω2 ∑
i  0

k
∥ αi di ∥2 ≤ ∑

i  0

k
∥ Fxi ∥2 −∥ Fxi 1 ∥

2  ∑
i  0

k
ηi ∥ Fxi ∥2

 ∥ Fx0 ∥2 −∥ Fxk 1 ∥
2  ∑

i  0

k
ηi ∥ Fxi ∥2

≤ ∥ Fx0 ∥2  M1
2 ∑
i  0

k
ηi

≤ ∥ Fx0 ∥2  M1
2 ∑
i  0


ηi. 32

Hence, from (27) and by the fact that ηk satisfies (23), the series ∑
i  0



∥ αi di ∥2 is

convergent. This implies (29). By a similar argument, with ω1 ∥ αk Fxk ∥2 at the left hand
side,we can show that (30) holds. 

Lemma 3.3. Let the level set Ω be bounded and xk be generated by the algorithm 1, then we
have

∑
k  1


∥ sk ∥   . 33

Proof. The inequality (24) can easily be rewritten as, we have,
∥ sk ∥  ∥ Fxk1 ∥2

≤ ∥ Fxk ∥
2 − ω1 ∥ αk dk ∥

2 − ω2 ∥ αkFxk ∥  ηk ∥ Fxk ∥
2  ∥ sk ∥

≤ ∥ Fxk ∥
2 −∥ Fxk1 ∥

2  ηk ∥ Fxk ∥
2 ∥ sk ∥. 34

Then by summing the above inequality, we have,

∑
i  0

k
∥ si ∥ ≤ ∑

i  0

k
∥ Fxi ∥2 −∥ Fxi 1 ∥

2  ∑
i  0

k
∥ si ∥ ∑

i  0

k
ηi ∥ Fxi ∥2

 ∥ Fx0 ∥2 −∥ Fxk 1 ∥
2  ∑

i  0

k
∥ si ∥  ∑

i  0

k
ηi ∥ Fxi ∥2
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≤ ∥ Fx0 ∥2  ∑
i  0

k
∥ αi

2 di ∥ ∑
i  0

k
∥ αiFxi ∥  ∑

i  0

k
ηi ∥ Fxi ∥2

≤ ∥ Fx0 ∥2  ∑
i  0


∥ αi

2 di ∥ ∑
i  0


∥ αiFxi ∥  M1

2 ∑
i  0


ηi. 35

Hence by (27), (29), (30) and (23),∑
i  0

k

∥ si ∥ is convergent and hence the proof completes.

Lemma 3.4. Suppose that assumption 2 holds, and let xk be generated by the MCGD
algorithm. If there is a constant ϵ  0 such that for all k,
∥ Fxk ∥ ≥ ϵ , 36
then there exists a constant M  0 such that for all k,
∥ dk ∥ ≤ M. 37

Proof. By (26), (29) and (30), we can write
∥ yk ∥  ∥ Fxk1 − Fxk ∥ ≤ L ∥ xk1 − xk ∥  L ∥ αk

2 dk − αkFxk ∥

≤ L ∥ αk
2dk ∥  ∥ αkFxk ∥ → 0. 38

Furthermore,
∥ yk − skT Fxk ∥  ∥ yk − sk ∥∥ Fxk ∥ ≤ M1∥ yk ∥  ∥ sk ∥, 39
which is bounded by (33) and (27). Hence

|βk| ≤
∥yk − sk∥∥Fxk∥  |vk|∥yk∥2

|yTdk −1|
→ 0. 40

This implies that there exists a constant ρ ∈ 0,1 such that for sufficiently large k,
|βk| ≤ ρ. 41
Now using
∥ dk ∥ ≤ ∥ Fxk ∥  |βk|∥ dk−1 ∥ − |vk|∥ yk ∥, 42
and setting

M3  max ∥ d1 ∥,∥ d2 ∥, . . . ,∥ dk0 ∥,
M1

1− ϵ0
, 43

we can deduce that for all k, (37) holds, i.e.,∥ dk ∥ is uniformly bounded. 

Now we are going to establish the following global convergence theorem to show that
under some suitable conditions, there exists an accumulation point of xk which is the
solution of (2).

Theorem 3.1. Suppose that assumption 2 holds, and xk is generated by the MCGD
algorithm. Assume further that for all k  0,

αk ≥ c
|FTxk dk|
∥dk∥2

, 44
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where c is some positive constant, then

k→
lim ∥ Fxk ∥  0. 45

Proof. By lemma 3.4, relation (37) should hold. Therefore by (29) and the boundedness
of ||dk||, we have

k→
lim αk ∥ dk ∥

2  0. 46

Then by (44) and (46), we obtain

k→
lim |Fk

T dk|  0. 47

On the other hand, from (21), it follows that
FTxk dk  − ∥ Fxk ∥2  βk FTxk dk −1 − FTxkvk yk −1,
which can be written as
∥ Fxk ∥ ≤ |F

Txkdk|  |βk|∥ Fxk ∥∥ dk−1 ∥  ∥ Fxk ∥∥ vk ∥∥ yk ∥. 48
So that by Equation (27), (37), (41), and by taking the limit of the above inequality, we have

k→
lim ∥ Fxk ∥ 0, 49

which is the required result. And hence the proof completes. 

4. Numerical Results

The performance of the proposed MCGD method for solving nonlinear equations (1) is
compared in this section, with a double direction conjugate gradient method for solving
large-scale system of nonlinear equations (DDLS) of [2].
For both methods we set the following parameters:

ω1  ω2  10−4, r  0.3 and ηk  1 /k  13.
The employed computational codes were written by Matlab (R2013a) and run on a

personal computer 2.10 GHZ CPU processor and 2.00 GB RAM memory. We stop the
iterations if the total number of iterations exceeds 1000 or ∥ Fxk ∥ ≤ 10−4. Ten test problems
from different sources, with dimension between 100 to 10,000, have been considered , with
different initial points, which are not restricted to a point that is too close to the solution.

Problem [6] 1:

Fx 

2 −1
−1 2 −1

  

  −1
−1 2

x  e1x − 1, . . . ,enx − 1T. x0  0.5,0.5,0.5, . . . , 0. 5T.
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Problem [6] 2:

Fx 

2 −1
0 2 −1

  

  −1
−1 2

x  sinx 1 − 1, . . . , sinxn − 1T. x0  0.5,0.5,0.5, . . . , 0. 5

Problem [11] 3:
Fix  xi2 − 1,
i  1,2,3, . . . ,n,
x0  −0.001,−0.001,−0.001, . . . ,−0.001T.

Problem [11] 4:
Fix  xi2  xi − 2,
i  1,2,3, . . . ,n,
x0  −0.5,−0.5,−0.5, . . . ,−0.5T

Problem [11] 5:

Fix  xi − 1 n2 ∑
i 1

n

xi

2

 ∑
i 1

n

xi − n,

i  1,2,3, . . . ,n,
x0  5, 5, 5, . . . , 5T.

Problem [11] 6:

Fix  ∑
i 1

n

xi  i xi − 1  e xi − 1,

i  1,2,3, . . . ,n,
x0  0.3,0.3,0.3, . . . , 0. 3T.

Problem [11] 7:
F1x  3x13  2x2 − 5  sinx1 − x2 sinx1  x2,
Fix  −xi −1 e

xi − 1− xi   xi4  3xi2  2xi 1  sinxi − xi 1 sinxi  xi 1 − 8,
Fnx  −xn −1 e

xn − 1− xn   4xn − 3,
i  2,3,4, . . . ,n − 1,
x0  0,0,0, . . . , 0T.

Problem [11] 8:
Fix  xi2 − cosxi − 1,
i  1,2,3. . . ,n,
x0  2,2,2...,2)T.
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Problem [11] 9:
F1x  3x13  2x2 − 5  sinx1 − x2 sinx1  x2,
Fix  −xi −1 e

xi − 1− xi   xi4  3xi2  2xi 1  sinxi − xi 1 sinxi  xi 1 − 8,
Fnx  −xn −1 e

xn − 1− xn   4xn − 3,
i  2,3,4, . . . ,n − 1,
x0  1,1,1, . . . , 1T.

Problem [11] 10:
Fix  5xi2 − 2xi − 3,
i  1,2,3, . . . ,n,
x0  −0.01,−0.01,−0.01, . . . ,−0.01T.

The numerical results for the two methods, mentioned earliear, are reported in Table 1,
where ”NI” and ”Time” stand for the total number of all iterations and the CPU time in
seconds, respectively. ∥ Fxk ∥ is the norm of the residual at the stopping point. We claim
that the method fails, and use the symbol ”-”, when the number of iterations is greater than or
equal to 1  103, but no xk satisfying ∥ Fxk ∥ ≤ 10− 4 is reached.

Table 1: Numerical results for the MCGD and DDLS methods for problems 1 to 10.
MCGD DDLS

Problems Dim NI Time ‖Fxk‖ NI CPU ‖Fxk‖

10 22 0.175664 6.56E-05 24 0.186838 9.51E-05
1 1000 24 0.943085 7.43E-05 25 0.983593 6.20E-05

5000 26 11.92271 6.14E-05 26 12.35829 7.89E-05
10 13 0.106446 6.71E-05 23 0.191258 9.17E-05

2 1000 13 0.677609 5.33E-05 38 1.503056 8.03E-05
5000 12 7.389241 6.78E-05 39 22.77284 8.96E-05
10 10 0.070472 5.78E-05 14 0.004965 9.52E-05

3 1000 11 0.007959 4.02E-05 16 0.010032 5.56E-05
10000 12 0.063938 2.80E-05 17 0.079654 7.55E-05
10 7 0.00375 8.17E-05 10 0.001772 1.31E-05

4 1000 8 0.007194 4.39E-05 10 0.009093 4.15E-05
10000 9 0.065825 2.36E-05 12 0.10169 1.58E-06
10 6 0.034072 9.50E-06 7 0.005677 5.35E-07

5 1000 6 0.010845 3.00E-05 7 0.014299 1.69E-06
10000 6 0.115347 9.50E-05 7 0.121814 5.35E-06
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MCGD DDLS
Problems Dim NI Time ‖Fxk‖ NI CPU ‖Fxk‖

100 12 0.0329 3.18E-05 _ _ _
6 1000 13 0.014714 2.21E-05 _ _ _

10000 13 0.140491 7.00E-05 _ _ _
100 17 0.074017 8.43E-05 27 0.045427 8.68E-05

7 1000 20 0.109742 5.95E-05 34 0.136662 8.06E-05
10000 19 0.607895 9.57E-05 31 0.958193 6.53E-05
100 10 0.005207 2.63E-05 11 0.005033 8.48E-05

8 1000 10 0.011801 8.33E-05 13 0.012242 4.97E-05
10000 11 0.092168 5.79E-05 14 0.107806 6.76E-05
10 22 0.009851 7.81E-05 23 0.008073 7.65E-05

9 1000 24 0.020505 9.19E-05 25 0.022873 9.00E-05
10000 27 0.169706 6.59E-05 28 0.159173 6.46E-05
10 9 0.004911 3.43E-05 10 0.005519 4.76E-05

10 1000 10 0.010817 2.34E-05 11 0.012221 2.01E-05
10000 10 0.093376 7.39E-05 11 0.087952 6.37E-05

From Table 1, we can easily observe that both of these methods attempt to solve the
considered systems of nonlinear equations and a better efficiency and effectiveness of our
proposed algorithm is clear since it works where the DDLS fails. This is quite evident, for
instance, in problem 6. In general, the MCGD method considerably outperforms the DDLS for
almost all the tested problems, as it has the least number of iterations and CPU time.

Figure 1: Performance profile of the MCGD and DDLS methods, in relation to the number of
iterations NI, for the problems 1-10.
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Figures (1-2) exhibit the comparative performance of our method in relation to the number
of iterations and CPU time, which were evaluated using the profiles of Dolan and Mor´e, [4].
That is, for each method, we plot the fraction P(τ ) of the problems for which the method is
within a factor τ of the best time. The top curve is the method that solved most problems in a
time that was within a factor τ of the best time.

Figure 2: Performance profile of the MCGD and DDLS methods, in relation to the CPU time
(in sec), for the problems 1-10.

5. Conclusion

In this paper we present a novel double direction iterative scheme MCGD for solving
large-scale systems of symmetric nonlinear equations and compare its numerical performance
with that of a double direction conjugate gradient method DDLS, [2], for solving these
quations. It is quite obvious, from the numerical results the MCGD algorithm is robust in
solving large-scale systems of nonlinear equations. In addition, we have proved the global
convergence of the MCGD method by using the approximate norm descent line search
proposed in [8]. The reported numerical results of the test experiments demonstrate the
efficiency and good performance of this new method.
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